RABBIT.—Sung=

PRODUCT MANUAL

Dynamic €

Integrated C Development System
For Rabbit Microprocessors

Function Reference
Manual

019-0113 - 080702—-L

The latest revision of this manual is available on the Rabbit web site,
www.rabbit.com, for free, unregistered download.

http://www.rabbit.com/

Dynamic C Function Reference Manual

Part Number 019-0113 + 080702—L « Printed in U.S.A.
Digi International Inc.© 2007-2008 « All rights reserved.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International Inc.

Permission is granted to make one or more copies as long as the copyright page contained therein is

included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International Inc.

Digi International Inc reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
RabbitSys™ is a trademark of Digi International Inc.

Rabbit and Dynamic C® are registered trademarks of Digi International Inc.

Windows® is a registered trademark of Microsoft Corporation

ii

PRODUCT MANUAL

Table of Contents

Alphabetical Listing of Dynamic C Functions 5
Group Listing of Dynamic C Functions 15
Arithmetic 15 Logging Subsystem 20
Bit Manipulation 15 MD5 20
Bus Operation (Rabbit 3000, 4000) 15 MicroC/OS-II 20
Character 15 Miscellaneous 21
Data Encryption 15 Multitasking 21
Direct Memory Access (Rabbit 4000, 5000) 15 Number-to-String Conversion 22
Dynamic Memory Allocation 16 Partitions 22
ECC 16 Pulse Width Modulation (Rabbit 3000, 4000, 5000)
Error Handling 16 22

Extended Memory 17 Quadrature Decoder (Rabbit 3000, 4000, 5000) 22
Fast Fourier Transforms 17 Rabbit 3000, 4000 22
File Compression 17 Rabbit 3000, 4000, 5000 22
File System, FAT 17 Rabbit 4000, 5000 23
File System, FS1 18 Real-Time Clock 23
File System, FS2 18 Serial Communication 24
Flash, NAND 18 Serial Packet Driver 26
Flash, Parallel 18 Servo Control (Rabbit 3000, 4000) 27
Flash, SD 18 SPI 27
Flash, Serial 19 Stdio 27
Floating-Point Math 19 String Manipulation 27
Global Positioning System 19 String-to-Number Conversion 28
HDLC Protocol (Rabbit 3000, 4000, 5000) 19 System 28
I/O 20 User Block 28
12C Protocol 20 VBAT RAM (Rabbit 4000, 5000) 28
Interrupts 20 Watchdogs 28
Chapter 1: Function Descriptions 29
Software License Agreement 563

Dynamic C Function Reference rabbit.com iii

rabbit.com

http://www.rabbit.com

PRODUCT MANUAL

Alphabetical Listing of Dynamic C Functions

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

Symbols ChKSOFtRESEL ...vvevvveniieiiiiiieiieieeicieee e 54

ChKWDTO v 55
_GetSysMacroIndexcocovvriniiiiiininiinnnn, 202 clockDoublerOffooovvvviiiiiiiiiiii, 56
_GetSysMacroValuecooovininiiiiinnnen 203 clockDoublerOnccooeeviiiiiiiiiiiiiiiiiinnn, 56
_SYSISSOftRESEL eovvvrrereeeeeeeeeiirireeeeeeeeeeenene, 525 CloseInputCompressedFileovrvrrrreen.. 57
_xallop ... 550 CloseOutputCompressedFileovvvrren.... 57
CXAVAIL weviiiiiiiiiiieeeeeeeeeee s 553 COBEEZIN v ees s s s s e s, 58
A COF_PKEATECEIVE vvvvvrereeeeeeeirrrreeeeeeeeeeiirneeeeenes 58

COF_PKEASENd .evvvvvreeeeeeeeeeeirreeeeeeeeeeeeireeee e 59
DS ettt 32 COT_PKEBTECEIVE vvvvvvneeeeeeieeiiiiiiiieeeeeeeeeeeieaaennns 58
ACOS +eneen et et e e e e e et aaaaas 32 cof_pKIBSENndovvveeeeeeeiiiiiiiiiiiieee e 59
ACOE +ene ettt 33 COT_PKECTECEIVE vvvvvvnneeeeeeeeeiiiiiiiieeeeeeeeeeerreaennns 58
ACSC weneen e e et e et aas 33 COT_PKECSENd .ovvvvviieeeeeeeieeiiiiieee e e e e e 59
ABSAECTYPE oot 34 COF_PKEDIECEIVE vvvvvrereeeeeeeirrreeeeeeeeeeeiirreeeeenns 58
AESAECTYPESIEAM «..eveeeeereeeeeeeeeeeeeeeeeeeeeeeens 34 COF_PKEDSENA .evvvvvveeeeeeeeeeiiirreeeeeeeeeeeeireeeeee 59
AESCICTYPE et eeeeeee e 35 COF_PKEETECEIVE wvvvverereeeeeeeirrreeeeeeeeeeeiinrneeneenes 58
AESENCTYPESIIEAM «..vveeeeeeeeeeeeeeeeeeeeeeeeeeeans 36 COF_PKEESENd .vvvvvvvieeeeeeeeeciirreeeeeeeeeeeeireeeeee 59
AESexpandKeyccoeveveveeeeeeeeereeeeeeieneneans 37 COF_PKEFTECEIVE wvvvvrreeeeeeeeeirrreeeeeeeeeeeiirreeeeenns 58
AESINItSIrEAM ceneeneeeeeee e eeeeeaeenn 38 cof_pktFsendcccccoeimiiiiiiiiiiiiiii, 59
BSEC cuvevreereereesteeteeeeeeeeeteete et eereeteereenaeareans 39 COf_SEIAZEIC ..ovviinrieiiieiiieciie et 60
S ST 39 COf_SEIAZELS ..oovviiuiiiiiiiiiieiie et 61
ALAN coveeeeeeeeeee et e e et e naeeaeens 40 COF_SETAPULC ..ovvieeriiiiiiiieiicciccic e 62
ALAND et ettt aaeens 41 COF_SETAPULS ...vvienriiiiiiiiieiic et 63
BLOT ettt ettt eaeens 42 cof_serAreadc.cooeuieiiiiiiiiiiiiii 64
e ISR 43 COF_SETAWIIE ...vveeuviiiiiiiiieiic e 65
rte) ISR 44 COf_SErBEELC ..oovviiriiiiiiiieiiccicc e 60

COT_SETBEELS uvvvrvrrieeeeeeeeeeiirreeeeeeeeeeeiirreeeeenes 61
B COE_SETBPULC «evvvvvvvieeeeeeeeeeiirreeeeeeeeeeeeiineeeeenes 62
BIT ovooeeeeeeeeeeeeeeeeeseeeeseeees e eesee s seseeesseee 46 COTSCTBPULS oot 63
o) | S TR 45 Cof_serBrea.d """"""""""""""""""""""""" 64
BItRAPOITE veovveeeveeereeeseeeseeeeseeseseeeeseessree 47 COSCIBWIIE ooty 2(5)
BItRAPOIL .v.veoveoveeveeseeeseeeeeseeeeeseeeseeeseee 48 cot{_sengetc """"""""""""""""""""""""" 61
BItWIPOIE +..veoveoveeveeseeseeeeeseeeeeseeeseees e 49 % f—z:gﬁzt; """"""""""""""""""""""""" 0
BitWIPortl ..ooooviiiiiiiiiiiiii 50 GO SEICPULS woorrreroeeeeii 63
C COF SETCTEAd .veevvvreeieieeniiieeeiiieeiiee e 64

COF_SEICWIILE oeeveeeeeeiiiiieiiieeeieeeeeeeeeeeeeeeeee, 65
CaleulateECC256 ...oouvvieiiiiiiiiiiiiiiiie S1 COE_SEIDIEELC uvvvrrvrieeeeeeeeeeiirreeeeeeeeeeeserreeeeenes 60
1S | N 53 Cof_sengets ___ 61
ChKCorrectECC256ovveniiiieiiiiiiiiiniiieiiee 52 COE_SEIDPULC «evvvvrvreeeeeeeeeeeiirreeeeeeeeeeeearreeeeenes 62
ChKHAIARESEE ..vvveeeiieiiiiiieeee e e 54 COE_SETDPULS «eveeveeeeeeeeeeeeeeeeeeeeeneeeereeeees e 63

Dynamic C Functions rabbit.com 5

http://www.rabbit.com
http://www.rabbit.com/products/dc/

COF_SEIDIEAd .evneeeee e 64 errlogFormatEntryccecvvvveeeeeeeeeeeennnneen. 100
COF_SEIDWIILE ..evvveeieeeeeeieeeeeeeeeeeeeeeeeeeeeee 65 errlogFormatRegDumpccceeeveeeeeeeecnnnnnnenn. 101
COf_SEIBEEtC .oovvvviiiiiiiiiiieiieeieieeeee 60 errlogFormatStackDumpceeeeeeeeeeennnnnenn. 101
COF_SEIEEEtS ..oovvviiieiiiiiiiiiieeeeieeeeeee 61 errlogGetHeaderInfocooeeeveeeeeeeeeeeeeeeeeeennn, 99
COf_SEIEPULC oovvvviiieiieieieieeeeeeeeeee 62 eITIogGEtMESSAZE vevveeeeeeeeerrireereeeeeeeeanrrneenss 102
COf_SEIEPULS .oovvviiieeeiieieeiieeeeeeeeee 63 errlogGetNthENtryccoeeecevviiieeeeeeeeeeennneenn. 100
COF_SEIEICA vvneeeeeeeeee e 64 errlogReadHeadercooeeeeeeeeeeeeeeeeeeeeeennnn. 102
COF _SEIEWIILE +evneeeeneeeeeeeeeeeeeeee e e e e eeeeeaenns 65 EITOT_INESSAZE «vvvvvrrreeeeeeesanrrrrereeeeeesessansresens 103
COF_SETF@ELC evvvvrririreeeeeeeeciiirreeeeeeeeeeenraness 60 EXCEPHON oveeenans 104
COF_SETF@ELS .eoeuvriiiireeeeeeeeeiiireeeeeeeeeeerranees 61 EXIE +euee et e et e e et e et e e e e et e e e e e e e aaaaaa—as 105
COf_SEIFPULC ooovvveieiiiiiiiiiieee 62 4 105
COF_SEIFPULS oovvvvieiiiieieiieeeeeeee 63
COF _SEIFTEAA evneeeeeeeee e e 64 F
COf_SEIFWIIE wvvvvvvvvvvvvvssnsssssssssssssssssssssssssssss 05 b e 106
COmMPIESSFILE .uvvvvveieeeeeeieiirreeeeeeeeeeeiirnreeeeeen 66 £at AUEOMOUNE eeoeeeoeooeooeoeeooeeeeo 107
COPAUSE ..cooeerrrreeeeeeeeeeeirreee e e eeeeerreeeeee e 67 FAE_CLOSE wereeeeeeeeoeoeeeeeeeeeeeee 110
CORESEL eeeeeerireeeeeeeeeeeeirreee e e e eeeetraeeeeee e 67 Fat_CTEAEDIT oo 111
CORESUIME ..evvvvvveeeeeeeeeeeiirreeeeeeeeeeeirneeeeeeeens 68 Fat_CTEALEFILE oo 112
€OS trnrrrrrreereeeeeeeiiirrrreeeeeeeenaeirrraeesaeeeeennnreees 69 £at_CLEALETIIE vereooooeeoeooooeeoeoooooo. 113
COS ettt 69 FAL_DEIELE v 114
D fat_ENUMDEVICE .vvvvveeeeeeeieiirreeeeeeeeeeeenvnneeen. 115
fat_EnumPartitioncccevvveeeeeeeeeieiinnnnnns. 116
DecomPressFileuvveeeeeeeeeeeiiiireeeeeeeeeeeenvnnens. 70 FAt_FIlESIZE ovvvvvvreeeeeeeeeeieiirreeeeeeeeeeeeenrnneess 117
defineErrorHandlerccoevvvveeeeeeeeeeiennnneen. 71 fat_FormatDeviceccceevvrvveeeeeeeeeeseirvnnnnn. 118
EE e 72 fat_FormatPartitioncceevveeeeeeeeresevnnnnen. 119
DElaYMS .ooeeeeeeiiireeeeeeeeeeeeerree e e e eeeearneeees 73 FAL_FTEE ooeeeeeeeerreeeeeeeeeeeeerreeeeeeeeeeeearrneeees 120
DEIAYSEC veeveeeeeierrrreeeeeeeeeeeeirrreeeeeeeeeeeerrnneees 74 FAL_GELAT coeeevvreeeeeeeeeeeeeeirreeeeeeeeeeeenrrneeess 121
DeElayTicKS ...ccoovvuvrveeeeeeeeeeeiirreeeeeeeeeeeeennnnness 74 FAt_GEtNAIME ..vvvvveeeeeeeeeeeeeiirreeeeeeeeeeeenrrneess 122
Disable_ HW_WDTccovvvvirrrerieeeeeeeinrnnnnen. 75 FAL_INEE oeveeeeeeeiirieeeeeeeeeeeeeirreeeeeeeeeeenrrneeees 123
DMAGLIOC ...ceoeeeiirreeieeeeeeeeccirreeeeeeeeeeeeeerrnneees 76 fat_InitUCOSMULEXccoevvvrrreereeeeeeeinrvnenen. 124
DMACOMPIEted ...vvvvveeeeeeeeeeiirreeeeeeeeeeeiennrnnenn. 77 FAt_LAStACCESS wvvvrvreeeeeeeeierrrrreeeeeeeeeeninrrneeess 125
DMAandle2chancooeeevveeeeeeeeeeeiecnnnnnen. 78 FAt_LAStWIIE .vvvvvveeeeeeeeeeieiirreeeeeeeeeeesnrnneeess 126
DMAIOE2ZMEM ..vvvvvveeeeeeeeeeeirrreeeeeeeeeeeenrrnneess 79 fat_MountPartitionccceevvveeeeeeeeeesivnnnnen. 127
DMAIOI2ZMEM ...vvvvvreeeeeeeeeeeiirreeeeeeeeeeeeennrnnenss 81 FA_OPEN oeeeeeerrreeeeeeeeeeeeecrreeeeeeeeeeeeerrneeees 128
DMAI10adBUfDESC .vvvvveeeeeeeeiirrreeeeeeeeeeinevnneen. 82 FAt_OPENDIT .evvvvveeeeeeeeeeeeecirreeeeeeeeeeeenrrneees 130
DMAMAtChSETUDP .vvvvveereeeeeeeiirreeeeeeeeeeeeerrnnenn. 83 fat_PartitioNDEVICEccevvrvrrreeeeeeeeresenrvnenes. 131
DMAMEM2I0€ ..vvvvrrreeeeeeeeeeinrrreeeeeeeeeeeennrnnenss 84 fAt_REAd ..ooooveirrieeeeeeeeeeeeereee e 132
DMAMEM2I01 «.vvvvvvveeeeeeeeeeeiirrreeeeeeeeeneenrnnnenss 85 fat_ReAdDIr ..vvvvvvveeeeeeeeeeeeiirreeeeeeeeeeeeerrneeess 133
DMAMEM2MEN ..vvvveeeeeeeeeeeinrrreeeeeeeeeninnrnnenss 86 FAL_SEEK 1oeeeeeeerrrreeeeeeeeeeeerreee e e e e e 135
DMADOIL c.coeeeeeiiireeeeee et 87 FAL_SELAME oevveevvveeeeeeeeeeeeeirreeeeeeeeeeeenrrneeees 137
DMADHNBUDESC vvvvveeeeeeeeeiirreeeeeeeeeeeinrrnnenn. 88 FAL_SPLIt oeeeeeeeirreeeeeeeeeeeeerreee e ee e 138
DMADINREZS «.vvvvvveeeeeeeeeeeiirreeeeeeeeeeeeerrnness 89 FAL_STALUS eevveeerrrreeeeeeeeeeeeirrreeeeeeeeeeesnrrneeess 139
DMASEtBUIDESC «.vvvvveeeeeeeeeeirreeeeeeeeeeeeennrnness 90 FAt_SYNCFILE .vvvvvveeeeeeeeeeeeeirreeeeeeeeeeeearrneeees 140
DMASEtDITECT ..vvvvvvveeeeeeeeeeeiirrreeeeeeeeeeenrrnneess 91 fat_SyncPartitioncceevveeeeeeeeereiivnnnnes. 141
DMASEtPArameterscceeevvveeeeeeeeeesevvnnenns 92 FAL_TEll oovvieeeeiieeeeeeee e 142
DMASEATLAULO evvvvvveeeeeeeeeeeiirreeeeeeeeeeeeennrnnenss 93 FAL_HICK ooeeieeieiiieeeeeeeeeeeeerreee e e e eearneees 143
DMASHATDITECT «evvvvveeeeeeeeeeeiirrreeeeeeeeeeeenrnness 94 FAt_TIUNCALE .vvvvvveeeeeeeeeeeeeiirreeeeeeeeeeenrrneees 144
DMASEOD coeeeeeeietrrreeeeeeeeeeeiirrreeeeeeeeeeeensrnneess 95 fat_UnmountDevicecccevvvveeeeeeeeeeienvvnnnen. 145
DMASEOPDITECE «evvvvvveeeeeeeeeeiirreeeeeeeeeeesenrrnnenss 96 fat_UnmountPartitionccceeeeeeeeeerniennnnnnen. 146
DMAHMEISEIUDP «vvvvveeeeeeeeeeeiirreeeeeeeeeenienrrnnenss 96 FA_WTIE oeeeveeeerrreeeeeeeeeeeeeirreeeeeeeeeeenrrneeess 147
DMAUNALIOC ...vnvvvrreeeeeeeeeeeirreeeeeeeeeeeeeenrneees 97 FAL_XWIIE oevvevvvreeeeeeeeeeeienrrreeeeeeeeeeennrnneeess 148
FCLOSE vvvveeeeeeeeierrreeeeeeeeeeeeerrreeeeeeeeeeenraneeees 149
E CTEALE vevveeeeeeerrreeeeeeeeeeeeeitrrreeeeeeeeeeearrneeess 150
enablelObUScoevvvvviiiiiiiiiiieieeee 98 fereate (FS2) oo, 151
6 rabbit.com Dynamic C Functions

http://www.rabbit.com

foreate UNUSEA w.ueveenneeeeeeeeeeeeeeeeeeeeeeeeeneeees 152

fereate_unused (FS2) .oooovvvevvvieieiiiiiiiiiiiieenen, 153
0[5 (<1(154
fdelete (FS2) vovvviveiieiiiieiiiieiiieieeeeeee 155
FAIUSD (FS2) weovvorereseeesseesees oo, 156
1101010 S 157
15120101 0.91 1 A A 158
1120 S 159
11351 111 A 160
flash_erasechipccoevveeveeeeeeeeieeeieieeeeeeeeeenn, 161
f1aSh_ETASESECLOT «nevnneeeneeeneeeeeeeeeeeeeeeeeeenaeeas 162
flaSh_gEttyPe ..evvvvrereeeeeeeeiiiiieeeeeeeeeeeriveeeean 163
FIASN ATHE eeeeeeeee et e e e e e e e e e e eaeees 164
F1ASH_TEAA +evneeeeeeeee e e 165
flash_readSectorccoevvvrrveeeeeeeeeereirvrenennn 166
flash_sector2Xwindoweeeeeeeeeerecrvvnnenn.. 167
flash_WIItESECTOr vvvvvreeeerrererrreeeeeeeeeeinrnreeeenss 168
13 0010) SRR 169
FNOA ©eveeieeeeeeeirreeeeeeeeeeeerree e e e ee e 169
fOpen_1d (FS1) wuvvveeieeeeiieicireeeeeeeeeeeeeirreeeene 170
£OPEN_Td (FS2) wuvvveeieeeeeeeiirireeeeeeeeeeeeirveeeenns 171
FOPEILWE o.eeeeetrrreeeeeeeeeeeecrrreeeeeeeeeeeernnneeeees 172
£OPEN_WI (FS2) wvvveiieeeeiieiiriereeeeeeeeeeeireeeene 173
fOrCESOTRESEL wvvvvveereeeeeieierrreeeeeeeeeeerrreeeenes 174
£EEAA vvvveieieeeierreeeee e eeeere e e 174
£read (FS2) covvvrrrreeeeeeeeeeeiiriereeeeeeeeeeeanreneees 175
FEEXD +vveeeeeeeeeeirrrreeeeeeeeeeiirrrreeeeeeeeeeerareeeeees 176
£5_format (FS1) .vvveereeeeeieiiirrreeeeeeeeeeeeirnneeenn 177
£5_format (FS2) .vvvevreeeeeieiiirrreeeeeeeeeeeernreeennn 178
fs_get_flash_1X (FS2) ..ecovvvvvrrrreeeeeeeeeierrrnnennn. 184
£5_get IX (FS2) wurrreeieeeeeeeiirrneeeeeeeeeeeeivrnneenns 185
fs_get 1X_Size (FS2) veevvvvevvirrrreeeeeeeeeeeivrneeenn 186
fs_get_other 1X (FS2) ..coovvvrrrreeeeeeeeeiernrnnenn. 187
fs_get_ram_I1X (FS2) ..ocovvvvvvrrreeeeeeeeeiervreeennn. 188
£5_ NIt (FS1) vovrvrreeeeeeeeeeeiirrreeeeeeeeeeernnneeeens 179
£5_ N1t (FS2) tvvvvrreeeeeeeeeieicrrreeeeeeeeeeeernreneees 180
fs_reserve_blocks (FS1) ocovvvveeeeeeeeeeiennnnnenne. 181
£5_SEt_IX (FS2) wurrreeieeeeiieiiirrreeeeeeeeeeeevrnneenns 189
£5_SEtUP (FS2) wvvrvveeieeeeeieiirrreeeeeeeeeeeernnnneenns 190
£5_SYNC (FS2) wuvrrvreieeeeeeieiirrreeeeeeeeeeeeinrnneenes 192
FSCK vvvveeeeeeeeeeirrrreeeeeeeeeeetrrreeeeeeeeeeraraaeeees 181
£SEEK (FS1) tovvurrrrreeeeeeeeeeiirrreeeeeeeeeeeennrneeenes 182
£SEEK (FS2) touvrrrrreeeeeeeeeecirrrreeeeeeeeeeernneeeees 183
FShift e 195
BTl (FST) wvrrrereseseeeeeses e 193
BTl (FS2) wvvverereeeeeeeses s 194
FEOA vvvveeeeeeeeeeiirrreeeeeeeeeeeitrrre e e e e e e ee et 199
FWIILE (FS1) vorrrrrreereeeeeieiitrreeeeeeeeeeeevnnneeeees 197
FWIILE (FS2) vvvrrrrreeeeeeeeieiiirrrreeeeeeeeeeesnneeeeens 198
G

GELCRAT ©vvvviieeeeeeeiieeeee e 199
GEECTC wvvvrreeeeeeeeeeirrreeeeeeeeeeeeitnrrreeeeeeeeennnnees 200
2etdivider19200vvvveeeeeeeeeiiiirreeeeeeeeeeeennee 200

Dynamic C Functions

ZEES trrrreeeeeeeeetrr e e e e e e e et r e e e e e e araaaea s 201
GetVectExtern2000ceevveeeeeeeeeeeeeiennnennn. 204
GetVectExtern3000cevvveeeeeeeeeeeeeeennnnnnn. 205
GetVeCtINeIN «.ovvvveneeeeeeeiiiiieee e eeeeeeeiinaenans 206
EPS_ZEt_POSIION .vvvvreeeeeeeiiiiieeeeeeeeeeiirrrenennn. 206
EPS_ZEL_ULC uvvvvrrieereeeeeeeiirirreeeeeeeeesnrnnaeeens 207
gps_ground_distancecccceeeeeeeeeiennnnnnnnn. 207
H

haNnNCPIX vevveeeeeeeirireeeeeeeeeeeerrree e e e 208
hannrealcccccooviiiiiiii 209
HDLCAbOIE ...ccoovviiiiiiiiiiiiiiii, 210
HDLCabOItF .ocoovviiiiiiiiiiiiii 210
HDLCCIOSEE ...ccoovviviiiiiiiiiiiiiiii, 210
HDLCCIOSEF ..ccovvviiiiiiiiiiiiiiiii 210
HDLCAIOPE ..cooevivvveeeeeeeeeeeeiirreeeeeeeeeeenene, 211
HDLCAIOPF ...cooeivveeeeeeeeeeeeeirreeeee e eeeeaene 211
HDLCEITOTE ...ooovviiiiiiiiiiiiii, 211
HDLCEITOrF ..ooovviiiiiiiiiiiii 211
HDLCextCIOCKE ...ccoovvviiiiiiiiiiiiiiiiii, 212
HDLCeXtCIOCKF ..cooovvviiiiiiiiiiiiiiiii, 212
HDLCOPENEevvvvvreeeeeeeeeeeeirreeeeeeeeeeennnee 213
HDLCOPENF ...vvivvreeeeeeeeeeieirreeeeeeeeeeennnee 213
HDLCPEEKE ...vvvvveeeeeeeeeeeeeirreeeeeeeeeeeaene 214
HDLCPEEKF ...evvevveeeeeeeeeeeeeirreeeeeeeeeeennne, 214
HDLCreceiVeEoooovvvviiiiiiiiiiiii, 215
HDLCreceiveFcoooovvviiiiiiiiiiii, 215
HDLCSsendEccooovvvviiiiiiiiiiiiiiii, 216
HDLCsendFcooovvviiiiiiiiiiiiiii, 216
HDLCSeNdingEvvvvveeeeeeeeiciirreeeeeeeeeeennnee, 217
HDLCSeNdingFvvvveeeeeeeeiieiirreeeeeeeeeeennnee, 217
hEXSIItODYLE .oeeveurrrreeeeeeeeeeieiirreeeeeeeeeeennnee, 217
RItWA ceeeeiiiiii 218
HEOA wovveeieeieiieee e 218
|

12 CHECK ACK tevneieee e 230
2C TN weeeeeee e e e e e e e e e e e e eaaeean 231
12C 1€ CRAT vovvneeeeee e 231
12C SENA_ACK tiivneeeee e 232
12C SENA_NAK teevneeeeeeeee e eee e 232
20 STATE X weneeeeeeeeeeeeeseeeeeeeeeeeneeeeneeeennaeees 233
12C STATEW_TX eeevneeeeneeeeeseeeeeeneeeeneeeenaeeennaeaes 234
T2C_StOP_X veveeeeeeeeieieeeeeeeeeeeeeee e 235
12C WIItE _CHAT veveeeeee e e eee e 235
INEIVAIMS .ooviiiiiiiieee et 219
INEIVAISEC ovviiieieeieeeeeeeeeeiee e 219
INtervalTick ..ooovvvveeeeeeiiieiiiiiieee e, 220
IPIES teveeeeeeeeeee e 220
IPSEL teveeeeeeeeeee e 221
ISAINUM v 221
TR 11) T N 222
$157 1154 KU UPRRRRR 222
ISCODONE ..ovviiiiiiieee ettt 223

rabbit.com

http://www.rabbit.com

ISCORUNNING ..vvvvvvrereeeeeeeiiiiiieeeeeeeeeeennveeess 223 MKIM ©vvveeeeeeeeeeciieee e e e e e eeirreeeeeeeeeeeeaeeeeeas 267
ISAIZIE vevreeeeeeeeiiiieeeeeeeeeeeeirre e e e e e e e eeerreeeeas 224 MOAS «eviiiiiee e e 268
ISETAPN coiiiieeiiieee e, 225
ISIOWET 1eveieeeeeiiiiieeeeeeeeeecitrreee e e e e e e eeerveneeas 225 N
1) o 1| 226 of eraseBIOCK oo 269
T 18 Loy 227 of e S 270
%sspace ... 226 nf:getPageSize .. 271
ISUPPET -oovvennrsnnsinnsnssississsss s 228 N INIDEVICE ovvvvvrreeeeeeeeeeiiiireeeeeeeeeeeeinneees 272
¥sxd1g1t ... 228 BE TOEDIIVEE oo 274
TE0@ vvvrreeeeeeeeeeecitr e e e e e e e e eetrrr e e e e e e e e eeenaees 229 P ASBUSYRBEW oo 275
Nf_iSBUSYSTAtUS ©evvvveeeeeeeeieiirreeeeeeeeeeenrnneeen. 276
K N 1eadPAgE ..ooovevveeeeee e 277
KBRIE .oeeevieeeeeeeeeeeeeieeeee e eeeeerrree e e e e eeaens 236 N WIEPAZE .ovvvvrveeeeeeeeeeeiireeee e eeeeianeees 278
L N_XD_DEEC wvvreeerurrireeeiirieeeeriieeeeeriireeeenans 279
12DS wevviieeee e 236 0
IAEXD ceeeeeeeeeeeee e 237 OpenInputCompressedFilecoeeeeeeeeereeeennnn. 280
LOZ evtreeeeee e e e 237 OpenOutputCompressedFileccoeeeeeeennnnn. 281
10Z_CIEAN .coeeeeeiiiiieeeeeeeecteee e e e 238 OS_ENTER_CRITICAL ueeveneeeeeeeeeeeieeeeenns 282
10Z_CIOSE coeeeeeevirieeeeeeeeeecciiireee e e e e e e eeervaeeeas 239 OS_EXIT_CRITICAL evueeeeeeeeeeeeeeeeeeeeenns 282
log_conditioneeeeeeeeeiecirreeeeeeeeeeeiinnneens. 240 OSFIagACCEDPE wvvvvrrrreeeeeeeieiiireeeeeeeeeeeenrvneenss 283
1og_fOrmatcevvveeeeeeeeeeeiciiiiieeeee e e e e, 241 OSFIagCreate ...uvvvvereeeeeeeierrrrereeeeeeeeeenrvneenss 285
10Z_MADP teeeeeeiiiiieiee e e e et 242 OSFIagDelcuvvvriiiieeeeeeeciiiieeee e e e e e e 286
10Z_NEXE 1eieeeeiiiiiiieeeeeeeeccitree e e e e e e eeeevaeeeas 243 OSFIagPendceeeeeeeeeeecriirieeeeeeeeeeenvvneens. 287
10Z_OPEN ceeeeeiiiiiieeeeeeeeeectreee e e e e e 244 OSFIagPOSt ..vvvvvririeeeeeeeeieiiireeeeeeeeeeeervaeenss 289
LOZ_PIEV teiieeeiiiiieeeeeeeeeecere e e e e 245 OSFIagQUETY ..vvvvvrereeeeeeeiciiireeeeeeeeeeenrvneenss 290
1OZ_PUL ceeeeeeeiiiieee et e 246 OSTIE ettt e e e e eeeeeeaes 291
10Z_SEEK 1oieieiiiiiiiieee e e 247 OSMDBOXACCEP ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeans 291
10Z10 weeeeeeieeeceiieeee e 248 OSMDbOXCIEALE .vvvvrereeeeeeeierrrrereeeeeeeeeanrrneenss 292
LONEIMP ooeeeeeeiiiiieeee e e e 248 OSMbBOXDEL ...evvivirireeeeeeeiiiiieeeeeeeeeeeirveeees 293
100pheadoooeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 249 OSMBDBOXPENAcooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennns 294
1010 03111 S 249 OSMDBOXPOSE ..cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenans 295
|0 o A 250 OSMDBOXPOStOPE .ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennns 296
Lo A 250 OSMDBOXQUELY ..eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennns 297
JEOAN ©eveeieeeeeeiiee e e e 251 OSMEMCTEALE «.vvvvrereeeeeeeierrrreeeeeeeeeeensreeenss 298
IX_fOrmat ...coeevviiiiereeeeeeeciireee e, 252 OSMEMGEL euvvvrrirereeeeeeeiciiireeeeeeeeeeeerrneenss 299
OSMEMPUL ..eevvviiiiieeeeeeeeeiireee e e e e e e e 300
M OSMEMQUETY ..ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenennns 301
mbr_CreatePartitioncooevvvvveeeeeeeeeennnns 253 OSMULEXACEEDL ©.vvvvvviricnirrssininntinnisnninnee, 302
T 254 OSMULEXCTEALE .vvvvrreeeeeeeierrrreeeeeeeeeeeienrreeenss 303
Mbr FOIMAtDEVICE v evreeoeeoeeoeeeeeeeeseses e, 255 OSMutexDel ...c.oeniniiiiiiiieiieiecee e 304
1D MOUNPAEON +.eooeeoeoooooooooooooo 256 OSMUteXPendcceeeeeeeeicvrrrieeeeeeeeeeenvvneens. 305
MbE._ UNMOUNEPALEOMN +..ooeooeooeooooooos 257 OSMULEXPOSE ..vvvvvrereeeeeeeiiiiireeeeeeeeeeenrrneenss 306
mbr_ValidatePartitionscceevvveeeeeeerennnnns 258 OSMULEXQUETY wovvovmsimcmsmnsininitininsnninnne, 307
T 259 OSQACCEPE ceenns 308
IAS_FINIS ovvvverveenesveene e 260 OSQUIEAe oo 309
SN oo 259 OSQDEl oo 310
MEMCHT ©evvvvieeeeeeeeieiirreeeeeeeeeeeiirrreeeeeeeeeenanes 261 OSQFIUSh ..o 311
IEMCINP +vvvveeeeeeeererrrreeeeeeeeeeniinrrreeeeeeeeennnnes 262 OSQPENd ..oooviiiniiiiiiies 312
IIGINICDY vvrverereeeeeseseeseseesesseseesesseeeseesesesseees 263 OSQPOSE ivniiiiiieeiieieireeereeer e e e ennens 313
INEMITIOVE 1vveeeeeeeeernrrrreereeeeeeenisrrreeeeeeeeennnnes 264 OSQPOSEETONE ..oovvvveeiniciirnsininitisniincnnne, 314
INEINSEL ©vvvvveeeeeeeeeiirrrreeeeeeeeeeninrrreeeeeeeeennnnes 265 OSQPOSLOPE woovvvvimsinititisininitinnnnee, 315
MKHME vvvvveeeeeeeeeiiiirreeeeeeeeeenirrreeeeeeeeennanns 266 OSQQUELY wovcvvviririminitisisininsinnnee, 316
OSSchedLoCK ..vvvvvereeeeeeiiciiiiieeeeeeeeeeivveeeen. 317
8 rabbit.com Dynamic C Functions

http://www.rabbit.com

0SSchedUnlockcooevvvveeeeeeiiiiiiieiiieiieenenn, 317 PKEATECRIVE ooeeviiiiiiiiiiiieiieiiiee 360
OSSEMACCEDPE coeeeeeeeeeeeeeieieeeieeeeeeeeeeeeeeeeeeee, 318 PKEASENd ..ooooviiiiiiiiii 361
OSSEMCTEALE ..vvvvrrrreeeeeeeierrrrereeeeeeeecerrrreeens 319 PKEASENING .cooeeeviiiieeeeeeeeeciiieee e e e 362
0SSemPendccoovvveveiiiiiiiiiiiiiii 319 PKEASEPArItY .oovvveiieiiiieieiii 362
OSSEMPOSE c.ceeevieeeeeeeeeeeeeeeeeeeeeeee 320 PKEBCIOSE .oovvviiiieiiiiieieiee 356
OSSeMQUELY .ceeeeeeeieeeeieeeeeeeeeeeeeeeeeeeeeeeeee, 321 PKEBEEEITOTS ..vvvvvvviieeeeeeeeeciirreeeeeeeeeeeaeenes 356
OSSetTickPerSecooevvveeeeeeeieeeieieeeieeeeeeeeen, 322 PktBInitBufferscccoevviiiiiii, 357
(O 1])y A 322 PKEBOPEN ..cooveiiiiiiiiieiie 358
OSStAtINIt coeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeee, 323 PKEBIECEIVE oeveviiiiiieiiiiieiieeeeeeeee 360
OSTaskChangePrioccccvvveeeeeeeeeecevvvnennnn. 323 PKEBSEN .ooeeiieeiiiiiiieee e 361
OSTaSKCTIEAtE .vvvvvrrreeeeeeiirrreeeeeeeeeeiirrreeeeans 324 PKEBSENdING ...covvvviviiereeeeeeeiiiiieee e e e e 362
OSTaskCreateEXtccoevveveeieeeieiiiiieieeeeeeen, 325 PKEBSEtParitycccccoeviiiiiiiiii, 362
OSTaskCreateHookccoeevveeeeeeeeennnnnnnnn. 326 PKECCIOSE ooeveeeieieieeeeeeeeeeeee 356
OSTaSKDEL ...cuvvvviieieeeeeeeiiiieeee e e e e 327 PKECEEEITOTS ..vvvvvvvviereeeeeeeiiirreeeeeeeeeeennenees 356
OSTaskDEIHOOKcceevevurrrreeeeeeeeeierrvnnennn. 328 PKCINItBULTETS .ovvvvveeeeeeeeeeeciieeeeee e 357
OSTaSKDEIRE vvvvveereeeeeeennrrreeeeeeeeeeierrrenennns 329 PKECOPEN 1vvveeeeeeeeiireeeeeeeeeeeerreeee e eeeennees 358
OSTaskIdIeHOOKccoevvurvvveeeeeeeeeiervrnnennn. 330 PKECTECEIVE voeeeeveeeerreeeeeeeeeeeieirreeeeeeeeeeennnee 360
OSTaSKQUETY .evvvvveeeeeeeeieinrrreeeeeeeeeeeerrrneeenns 330 PKECSEN .vvvveeeeeeeeiiieeeeeeeeeeeeireeee e e eeeaenee 361
OSTaskRESUME ...eeeeeeeeeeennrrreeeeeeeeeeinrnreneenss 331 PKECSENAINGoooveerrrrreeeeeeeeeiciireeeeeeeeeenene 362
OSTaskStatHOOKccoeveuvrvveeeeeeeeeiernrneennn. 331 PKECSEtPALILY ..eeeveeevreeeeeeeeeeeiiirreeeeeeeeeennnee 362
OSTasKStKChK ..vvvvveeeeeeiiiirireeeeeeeeeeeirveeene. 332 PKEDCIOSE vvvvveeeeeieiiireeeeeeeeeeeiciireeeeeeeeeeeannee 356
OSTaskSUSPEndcceeeevvurrveeeeeeeeeeirirnrneennns 333 PKEDEELEITOLS .oeoeeevvveeeeeeeeeeeeirreeeeeeeeeeennnees 356
OSTaskSWHOOK ...cceeeeevveinrrreeeeeeeeeeienrnnnenn. 334 PKEDINItBUFTErS ooovvvvveeeeeeeeeeeiiireeeeeeeeeennnee, 357
OSTCBINItHOOK .vvevveeeeeeeiirrreeeeeeeeeeeeinveeenen. 334 PKEDOPEN eveeeeeeiieiiieeeeeeeeeeeeireeeeeeeeeeannees 358
OSTIMEDLY evvvvvveeieeeeeeieiirrreeeeeeeeeeeennreeeenes 335 PKEDIECEIVE voveeevveeirrreeeeeeeeeeiirrreeeeeeeeeeennnees 360
OSTimeDIYHMSMcooovvurrrreeeeeeeeeecrnrenenne. 336 PKEDSENd 1vvvveeeeeiieiiieeieee e 361
OSTimeDIYRESUMEccovurrreeeeeeeeeernrnrneennn. 337 PKEDSENAING ...eooeeeeirreieeeeeeeeieireeee e e 362
OSTIMEDIYSEC vvvvveeeeeeeeieierrrreeeeeeeeeeerrreneenns 338 PKEDSELPATILY ...ceeevevrreeeeeeeeeeeiiireeeeeeeeeennnee 362
OSTIMEGEL c.vvvvvrrreeeeeeeeeeiirrreeeeeeeeeeeerrreeeees 339 PKEECIOSE vvvvveeeeeieirreeeeeeeeeeeiirreeeeeeeeeeenenees 356
OSTIMESEL ..vvvvvrrreeeeeeeeeeiirrreeeeeeeeeeeernrreeeees 339 PKEEGELEITOTS .eeveeevvvveeeeeeeeeeiirreeeeeeeeeeennnees 356
OSTIMETICK evvvrvreereeeeeieiirrreeeeeeeeeeeerrreeeenss 340 PKEEINIBUFTELS .ooovvvveeeeeeeeeeeeiireeeeeeeeeennnee, 357
OSTimeTickHOOKccevvevunrrrreeeeeeeeeicrnrnnennn. 340 PKEEOPEN 1vvvveeeeeeieiiieeeee e eeeerreeeeeeeeeeeaenees 358
OSVEISION ..vvvvvrrrreeeeeeeeieiirrreeeeeeeeeeeesnneeeeens 341 PKEETECEIVE vovveeeieeeirreeeeeeeeeeecirreeeeeeeeeeennnees 360
OULCHTS 1vvveiieeeeeeeieeeee e 341 PKEESENd .vvvvieeeeiiiiieeeeee e 361
OULSTE wvvvvreeeeeeeeeeinrrereeeeeeeeeeeanrrreeeeeeeeennnnnees 342 PKEESENdiNgcoovvvurrrreeeeeeeeeiiiireeeeeeeeeeeene, 362
PKEESELPALILY ...eooveeevreeeeeeeeeeeiirreeeeeeeeeennnes 362
P PKEFCLOSE vvvvveeeeeeieiirereeeeeeeeeceirreeeeeeeeeeenenees 356
PAAAL eevevreeeeee e 343 pktF ELEITOTS oo 356
PAAAIDS ..vviiieiiiee e 344 PREFIMBUFTErS ..o 357
PAAAISS wevveieeieeeeee e 345 pktFop I cornrrsrmnrsnssies 358
PALLOC evverreeeeeeee e 346 PRIFIECEIVE oo 360
PALLOC_FAST wevveeeeeeeiiieeeee e 347 pktF send. """"""""""""""""""""""""""" 361
1 348 PKEFSENdIngcoovvuvvvveeeeeeeeeiiirreeeeeeeeeeennne, 362
PAVALL 1eeeiiiiee ettt :
PAVAIL_FASt .evviieiiiiiiieeiee e 349 PREFSELPAMLY ..o 362
DCIIOC v 350 PLASE e 363
PIIESE ceiireeeee e 351 PIASt_fASt oo 364
PEISE_EASt 1evvieeeeiieiiiieeeeee e 352 PMOVEDEWERN ..ovvniiiiiiiiiiiis 365
f 353 PMOVEDEtWEEN_fast ...vvvereeeirieeeeiiiieeeeiiieenns 367
PITEE weeeeiiiee ettt e
S 354 PREL et 368
PRWITL oo 355 PIEXE evvvrrreeeeeeeeeeirrreeeeeeeeeeierrrereeeeeeennnnnees 369
S 356 PREXE_FAST 1evvieeeeiieiiieeeeeeeeeeeerre e e 370
PKEAGELELTOS vvvvovveeoveoeoseoe oo 356 POLY ettt 371
DRCATIBUTEELS oo 357 PooLappend ... 372
PKEAGDEN +vvveveeee oo 358 POOLANIL wvvveieeeeeieeiiieeieee e e e eeaenee 373
Dynamic C Functions rabbit.com

http://www.rabbit.com

POOL_IINK .vvvvvviviieeieeeeeeeeeeeeeeeeeeeeveeeeeveeeraeeees 374 FOOT2XIMECINL «eeeeneeeeeeeeeeeeeeesenaeeeeaeeeeneeeenaaeees 421
POOL_XAPPENdvvvvvrereeeeeeieeeereeeeeeeeeeererernnenes 375 FEC_tIMEZONE .ceveeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeee 422
POOL_XINIt +.vvvvvvveveeerereeereeeeeeereeeeeeereeeeereranenes 376 TUNWALCH et 423
POW eevveeeeeeeeenessnessssssresesrsessnressesssrrsnsnnnrnnnnes 377
O 377 S
POWEISPECTIUM ..o 378 sdspi_debouncecceevvveeeieeeeiiiiiiirreeeeeeen, 423
pprev f """""""""""""""""""""""""""" ggg SASPI_GEt_CSA vrvvrreeeeeieiiireeeeeeeeeeeerreee e 424
ppre;/_ ASE v 381 SASPI_ZEL_SCT veeeeurrireeerirreeeeiireeeeeriraeeeeeaennes 425
pputlastoieiiiii SASPI_GEt_STATUS_TEE vvevevererererererereeeeeeeeerenenene 426
pputla§t_fast .. 382 T T 426
PIEMAIN ..vvvvvvereeeeeeerereeeeeeeeeeereeeeeeeseeenenerenenes 382 e 427
pr§order ... 383 SASPE_INTDOVICE +vvrvreerreeesereeeseeeesereesooee 428
151215 U URPRRRPPRURRRN 385 T 429
PULCHAT ...evvvvveeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeranenes 391 SASPENOMDUSY —ervvve v 429
puts T IR LRI IR R IR IR BRI LRI 391 SASPIL_PINE_AEV veveverereeereeeeereeeeeeeeerereeeeenns 430
PWINL_ANIE ©vvvveeieeeieiiiirreeeeeeeeeeeirreeeeeeeeeeeanns 392 SQSpi_DroCess. cOmMANG .v.evseeessssssesssssssessees 431
PWINL_SEL wvvvveeeeeeeeeiiirrreeeeeeeeeeeiarrreeeeeeeeennnnes 393 T 432
PXALLOC wevvvveeeeeeeeeeecirreee e e e e e 394 SASPE_TESCL_CATA +vvvrrverrreeseeessees e 433
PXAOC_FAS wovieeieeiciirrieeee e e e 395 T N 434
pxcaHOC ... 396 SdSpi_Set_blOCk_length ''''''''''''''''''''''''''''''''' 435
PXIILSE evvvvveeeeeeeeeeeeiirreee e e eeeeerrreeeeeeeeeeanes 397 T = s YT 434
PXTISE_FASt wevvieeiieieiirreeeeeeeeeeeirrree e e e e eeanns 398 N 437
PXITEE evvrrreeeeeeeeeeeeitrreeeeeeeeeeeiirrreeeeeeeeeeanes 399 Sspi_ WEHECONGNUE vvv.veorveereeesreesseeeree. 436
PXfree_fastoooviiiiiii 400 SETACIOSE uvvvrrveeeeeeeeeeiirrreeeeeeeeeeeeitrrrreeeeeeens 456
PXIASE cevvevrreieeeeeeeeeerreee e e e e 401 serAdatabits oo 456
pxlast?fast """""""""""""""""""""""""" jgg SETAAMAOTT ..vvvviiiiiiiieiieeeeee e 457
PXOCKL . cvermvennnsincssns SETAAMAON ..vvvveiieeeeeeeirieeeeee e 458
PXNEXE_TASE wevvieeiieiiiirreeeeeeeeeeeiirrreeeeeeeeeeanns 404 SerAflowcontrolOff wov 459
DXPIEV etvrveeeeeeeeeeiiirrreeeeeeeeeeniinrrreeeeeeesennnes 405 SerAflOWCOntrolOn e 460
PXPIEV_faSt oo 406 SETAGELC 1vevrrrrreeeeeeeeieiirrrereeeeeeeeeeisrrrreeeeeeens 461
Q SETAGEEITOT vvvvvieeeeeieiiirreeeeeeeeeeeeivrreeeeeeeens 462
SETAOPEIL «evvvvvreeeeeeeeeeeiirrreeeeeeeeeeeetrrreeeeeeeens 463
QA_EITOT woviieeieeeciireeee e e eeeeaneeees 407 SETADALILY evvvvveeeeeeeeeeeiirrreeeeeeeeeeierrrrreeeeeeens 464
QA_ANEE 1eveieeeeieeeiieeeee e 408 SETAPEEK .vvvvrveeiieeeeeieiiiieeeeeeeeeeeeeirrreeeee e 465
QA_1ad .evveiieiieieeee e 409 SETADPULC «.vvvvvrveeeeeeeeeeeiirrreeeeeeeeeeeesrrreeeeeeeens 466
QA_ZETO wevveeeeeeeeciieeeeee e 409 SETADULS .vevvvvveeeeeeeeeeeiirrreeeeeeeeeeiesrrrreeeeeeens 467
GSOTE vvvveeeeeeeeeeeeitrreeeeeeeeeenetrrrreeeeeeeeenrrneeess 410 SETATAFIUSH .vvvvveieeeeiieiiiieeeeeeeeeeeeeirreeeeee e 468
SETATAFTER ..vvvvveeeeeeeeeeiirreeeeeeeeeeeeeirrreeeeeeeens 468
R SETATAUSEd ..vvveeeerieeeeeiiieeeecireee e e e e e 469
B8 oo A1 SEOATA o 470
TANA ©.evvviiieeeee e e e e e e eeeiarere e e e e e e e enenes 411 SETAWIFIUSh oo 471
TANAD .eeviie e 412 SETAWIETEE wvvvvoiviimiminicceicnnnes 471
TANAZ ©vvveeeeeeeeeeiiiieeeeeeeeeeireeeeeeeeeeeeeaaneeeas 412 SETAWIIE ..ot 472
RAPOME ...vveoeveeeeeeeeee oo eeeeeseseneeeenes 413 STAWIUSEA oo 473
RdPortl ... 414 sechlose. .. 456
TEAA_TEC wevveeeeeeeiiiiiieeeeeeeeeirreee e e e e e e eeeeraeeeas 416 SerBAatabitsooooiviiiiiiiii 456
£ad_C.32KHZ oo 416 SerBAmMAaOfTocoeeeeiiiiiiieeeeeeeeeeeeereeeeeee e 457
ReadCompresSedFileovvvovmroororeooorooonnn, 415 SErBAMAON ...vvveeieeeeeeeiiieeeeeeeeeeeeereeee e 458
1eadUSerBIOCKvvvveeeeeeieeiiiiiiieeeeeeeeeiineeen. 417 serBflowcontrolOffocvvvvviiiiicininnn. 459
readUSEIBIOCKATTAY «..vvoooveoooeeeoooooooeoooon 418 serBflowcontrolOnccvveeeeeeeeeeieinveeeeeeennn. 460
RES w.covorseveeeesseeenessseeens e 419 SEBECIC o 461
TES 1vveeeeerreeeeeireeeeeeirreeeeeateeeeaeiareeeeearaeeeans 419 e R R 462
O 420 SErBOPEN .vvvii s 463
R A R 420 SEIBPAILY .oovoveviiiiii 464
10 rabbit.com Dynamic C Functions

http://www.rabbit.com

SEIBPEEK ooviiiiiiiiiiii 465 SEIEdatabitscceeeeeeee e 456
SEIBPULC cooveiveeiiieeiieeeeeee 466 SEIEAMAOTT ...eveeeei e 457
SEIBPULS ooveiiiiiiieiiieeeee 467 SEIEAMAON ..evveeeeeee e 458
SerBIdFIUShvvvviiiieeieieiiiiieeee e, 468 serEflowcontrolOffveeeeeeeeieciiiiiieeeeeeenn, 459
SEIBIAFTEE ..vvvvvvvieeeeeeeeeeiiieeeeeeeeeeeiirreeeans 468 SerEflowcontrolOnveeeeeeeeeeeinviveeeeeennns 460
SErBIAUSEdvvvvvieeeeeeeeeiiiiieeeeeeeeeeiireeean 469 SETEGEIC 1uvvrririreeeeeeeiiiireeeeeeeeeeenrreeeeeeeenns 461
SErBreadoocvviviieieeeeeeeeee e 470 SETEGELEITOL 1vvvvviieeeieiciiiiieeeeeeeeecirireeeeeeeaes 462
SerBWIFIUshooooovviiiiiii 471 SEIEOPEN .evveeeeeeei e nanens 463
SEIBWIFIEE ooovvviviiieiiiiiiiiiiii 471 SEIEPAIILY ©.eveeeeeeeee e enanens 464
85 1 g o 1< 472 SEIEPEEK .uvvveeeeiee e naaees 465
SerBwrUsedooovvvveeiiiiiiiiiii 473 SEIEPULC ©evveeeeeeiee e enenens 466
SEICCIOSE veeeeeeeeeeeeeeeeeeeee e 456 SEIEPULS «evveeeeeeeeeeee e nnenenens 467
SErCdatabitsvveeeeeeeeeeiiiiieereeeeeeeivnreeeean. 456 SETEIAFIUSD ..vvvviiiiiiiiiiiiiiee e eececiieee e, 468
SerCAmMaOfTvvvieeeeeeeeeiiiieeee e eeeciireeeen 457 SETEIAFTEE .vvvvvvreeeeeeeiiiiiiieeeeeeeeeeirireeeeeeenns 468
SErCAMAONvvvvvveeeeeeeeeerieeeeeeeeeeeeeareeeene 458 SETETAUSEd .vvveeeeviieeeeiiieeeeeiiieeeeeireee e 469
serCflowcontrolOffccccvvvveeiieeeeeiiinnnnnenn.. 459 SETETEAd ..vvvveeeeiiiieeeeiiieee e e e eeireee e 470
serCflowcontrolOnccccvveeeeeeeeeeiecrnnnnennn. 460 SETEWIFIUSH ©vvvvviiiiiiiiiiiieeeeee e 471
SEICEELC 1evveererrrrreeeeeeeeeeiirrrreeeeeeeeeensrrreeeees 461 SETEWIFIEE .vvvvveiieeeeeieiireeeeeeeeeeeeiirireeeeeeeenas 471
SETCEELEITOL .uvvvvvieireeeeeieiirrreeeeeeeeeeeetnreneees 462 SETEWIILE ©.vvvvvveeeeeeeeeieiirreeeeeeeeeeeiirrreeeeeeeenns 472
SETCOPEIL ..eveerrrrreereeeeeieiirrrreeeeeeeeeeesrrereeens 463 SETEWIUSEd .vvvveiieeeieieiireeeeeeeeeeeecrieeeeeeeeenns 473
SEICPATILY eeeervrrreereeeeeieiirrreeeeeeeeeeeeanrneeeees 464 SEIFCLOSE «evvvvvveeeeeeeeeieiirreeeeeeeeeeeiirrreeeeeeeenns 456
SEICPEEK oeeeerrrrreeeeeeeeeeiirrreeeeeeeeeeeerarneeees 465 SEIFAatabitscceceeiieeiirreeeeeeeeeieiirireeeeeeenns 456
SEICPULC .eeeenerrrrreeeeeeeeeeiirrrreeeeeeeeeensrnereeees 466 SerFAmMAaOTEveiiiiiiiiiiiiieeeeee e 457
SEICPULS .eeeenerrrrreeeeeeeeeeiirrrreeeeeeeeeeernrereeees 467 SETFAMAON ..vvvveiieeeieieiireeeeeeeeeeeeriree e, 458
SErCIdFIUSh ...vvvvvveiieeeeiieiieeeeeeee e 468 serFflowcontrolOffccvvveeeeeeeiiiiirireeeeeeen, 459
SEICIAFTEE .vvvvvvrveeeeeeeeeeiirreeeeeeeeeeeeernnneeees 468 SerFflowcontrolOncccvveeeeeeeereeiivrneeeeeeenns 460
SEICIAUSE ..vvvvvrvreeeeeeeeieirrreeeeeeeeeeeernrneeenes 469 SEIFEEIC vvvvrrreeeieeeeeeeiireeeeeeeeeeeerrreeeeeeeenns 461
SEICIEAM .oeevervrreeeeeeeeeeeitrreeeeeeeeeeeerarereeees 470 SEIFELEITOT 1vvvvviieeeeeeeiireeeeeeeeeeeecrrreeeeeeeenns 462
SETCWIFIUSH «.vvvvvvveiieeeeeeetieeeee e 471 SEIFOPEN ..vvvvvveeiieeeeeeeiireeeeeeeeeeeeeirareeeeeeeenns 463
SETCWIFTEE .vvvvvvvveeeeeeeeeeiirrreeeeeeeeeeeerrrneeenes 471 SEIFPATILY ©evvvvveeeieeeeeieiireeeeeeeeeeeeirrreeeeeeeenns 464
SEICWIILE .eeveeevvrrreeeeeeeeeeiinrrreeeeeeeeeennsnneeeeees 472 SEIFPEEK .vvvvvvveeeieeeeeeeiirreeeeeeeeeeeerireeeeeeeenns 465
SETCWIUSEA .evvvvvvveeieeeeeieiirrreeeeeeeeeeernneneenes 473 SEIFPULC .vvvvrvreeeeeeeeeieiireeeeeeeeeeeeirrreeeeeeeenns 466
SEIDCIOSE .coovnerrrrreeeeeeeeeeiirrreeeeeeeeeeeerrrnreees 456 SEIFPULS 1.vvvvrrieeeeeeeeeeeireeeeeeeeeeeerrreeeeeeeenns 467
SErDAAabItsvvvvveeieeeeiieiiireeee e 456 SEIFTAFIUSH .vvvvveiiieeieiiiieeeee e 468
serDAMAOTEvvvvveiieeeeiieiiieeeeeeee e 457 SEIFTAFTEE .vvvvvveiieeeeeeeiirreeeeeeeeeeeiirrreeeeeeeenns 468
SErDAMAON ...vvvvvveeieeeeeeeeiieeeeee e e 458 SETFTAUSEd .vvveieeeviieeeeiiieeeeeiieeeeeieeee e 469
serDflowcontrolOffcccevvvveeeieeeeeiiirnrnnenn.. 459 SETFTEAd ...vvvveeeeeiiiieeeeiiiee e e e e 470
serDflowcontrolOncccevveveeeeeeeeesecrvnnnennn. 460 SETFWIFIUSh ©vvvvviiiiiiiiiiiiiieeeee e 471
SEIDZELC 1oeeeeveirrrreeeeeeeeeeeitrrreeeeeeeeeeetarnaeees 461 SEIFWIFTEE .vvvvveiieeeeeieiireeeeeeeeeeeeiirrreeeeeeeenns 471
SEIDEEEITOT ..vvvvvveireeeeeieiirireeeeeeeeeeeenareeeenes 462 SEIFWIILE ..vvvvvveeeeeeeeeieiirreeeeeeeeeeeirrreeeeeeeenns 472
SEIDOPEN .ceovneiirrreeieeeeeeeetrreeeeeeeeeeeearreeees 463 SEIFWIUSEd .vvvveiieiiieieiirreeeeeeeeeeeeriree e e 473
SEIDPALILY .eoevvvrrreeeeeeeeeeiitireeeeeeeeeeeerrreeeenes 464 servo_alloc_tableccccveeereeeeiiiiiinineeeeeeenn, 438
SEIDPEEK .eovnerrrrreiieeeeeieiireeee e 465 $ervo_closedloopccevvveeereeeeiieiiirireeeeeeennns 438
SEIDPULC o.eeeeeirrreeeeeeeeeeeiirrreeeeeeeeeeerrrneeees 466 $ervo_disable_0cccevvrrreireeeeiiiiirireeeeeeenns 439
SEIDPULS o.eeeeveirrreeeeeeeeeeeiirrreeeeeeeeeeeerrrneeees 467 Servo_disable_1cocevvvrreiieeeeiiiiirieeeeeeeenns 440
SEIDIAFIUSH ©.vvvvvvieiieeeeeieiieeeeee e 468 SErvo_enable_0coovvvrreereeeeriniiirireeeeeeennns 441
SEIDIAFTEE ...vvvvvvvveeieeeeeeeiirireeeeeeeeeeeerrreeeenes 468 SEIVO_enable_1ccoevvvveeereeeerieiirrreeeeeeennns 442
SEIDIAUSEd ..vvvvvvvveeieeeeeieiieeeeeeeeeeeeeivreeeeee 469 SEIVO_ZEAT wvvvvveeeeeeeeeeerrrrreeseeeeseniisrsreesesennnns 443
SEIDIEAd ..oooeviirireieeeee e 470 SETVO_EIAP 1vvvveiieeeeeieiirreeeeeeeeeeeiirrreeeeeeennns 445
SEIDWIFIUSh ..ovvvvveiieeieiiiiieeeeeeee e 471 SEIVO_INIL ©evvvvveerreeeeeeeiurereeeeeeesensisrrreeeeeeennns 446
SEIDWIFIEE .vvvvvvveeiieeeeeeeiiireeeeeeeeeeeereeeenes 471 servo_millirpm2vemdeceeeeeeeeiivineeeeeennn, 446
SEIDWIILE «.eeeeevvrrreeeeeeeeeeiirrreeeeeeeeeeeernrneeees 472 SETVO_INOVE_TO vevreeeeeeeurrrreeeeeeeseeinrrreeeeeenanns 447
SEIDWIUSEd ..vvvvvvveiieeeeeieiiireeeeeeeeeeeereeeeee 473 SEIVO_OPENIOOP ..eeeeeeeerrrrreeeeeeeeieiirrreeeeeeennns 448
SETECIOSE .evvverrrrreeieeeeeeeiirrreeeeeeeeeeeerreeeeees 456 ServO_qd_zero_0ccoevvurrreereeeeeeeiirireeeeeeeenns 449
Dynamic C Functions rabbit.com 1

http://www.rabbit.com

SErvO_qd_zZero_1 ceoeveeeeeeeeeeeeieeeeeeeeeeeeeeeeeeennnn 449 SPIINIE eeeenneeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeenaeas 499
SEIVO_1€ad_taDIE ..vvveeeeeeeeeeee e 450 SPIRECAA weneeeeeeeee e eeeeeeeeeeeeeas 500
SEIVO_SEt_COCTES wnveneeeeeeeeee e e eeeeeeeeas 451 SPIWTILE wueeeeeeee e e et e e eee e e e e eeeeeeeeeeeeaes 501
SEIVO_SEE_POS eveeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeaeens 452 SPIWIRA et e s 502
SEIVO__SEE VEL eeeeeeeee e eeeeeeeeas 453 0181115 S 503
SETVO__StALS. TESEL wueevnneeerneeerneeeeneeeeneeeeeaeeeenaees 453 SO e nnnnnn 504
I RO 10) 0|1 (< 454 STANA ettt e e e e e e e 504
SErXAAtabits ...eevvveeieeiiiiiiiiiee e 456 STICAL wevvuueeeeeeeeeeetieeeeeeeeeeeeeaaeeeeeeeeeeanans 505
SErXdmaOTFT ...oovvveiieeiiiiiiieeee e 457 SEECHT ettt e ettt eeeeeaaaaas 506
I 9, 06111 .10) W 458 1083111 TR 507
serXflowcontrolOffccoeeeeeeeeeeeeiieeeeeeeeeeennn. 459 10831115) AR 508
SerXflowcontrolOncceeeeeeeeeeeeeeeeeeeeeeeeeennnns 460 108012 509
SEIXEELC 1eeeeeeeurrrrrrereeeeeeeietrrreeereeeeeeenanrreeenss 461 STTCSPIT cieevriiereeeeeeeeeiirrreereeeeeeesnerrrreeaaaeens 510
SEIXEEEITOT .evvvvvirieeeeeeeeieiiireeeeeeeeeeeenrvneenss 462 SIIEN 1oiieeiiiiiiiieee e 511
SEIXPALILY oeeeervrrreeeeeeeeeeeeitrrreeeeeeeeeeeenrrneeess 464 STITICAL oeeeeeervrreeeeeeeeeeeinrrreeeeeeeeeeeerrrrreeeaeeens 512
SEIXPEEK eevverrrrreiieeeeeeeeerreee e e e e 465 STTICIIIP vvvvvvrreeeeeeeeeeeinrrrereeeeeeeeeerrrrreeeeeeens 513
SEIXPULC 1eeeeeerrrrrreeeeeeeeeeeeirrreeeeeeeeeeenenrrneeess 466 STITICINIPL cevvvvvrreeeeeeeeeeeinrrrereeeeeeeeeerrrrreeeeeeens 514
SEIXPULS +eeeeeeerrrrreeeeeeeeeeiiirrrreeeeeeeeeennenrrneeess 467 STITICPY +eenrrrrrrreeeeeeeeniinrrreeeeeeeeeeeesrrrreeeeeeens 515
SEIXIAFIUSH ©.vvvvvvveeeeeeeeeeciireeeee e eeerneeee 468 STPDIK ceeeririeeieee e eeeireeee e 516
SEIXTAFTEE .oveveeeeeeeeeeeeeeeeeeeeeeee e 468 STITCHT e 517
SEIXTAUSEd ..vvvvvvveeeeeeeeeeeeeirreeeeeeeeeeeerrneeees 469 STESPIL 1.eeeenerrrreeeeeeeeeeeinrrreeeeeeeeeesesrrrreeeeeeens 518
19, =0T I 470 103 1 519
SEIXWIFTUSH .ovvveeiieeeeeeeeeeeeeeeeeeeeeeeeeee e 471 10410« A 520
SEIXWIFTEE .ovvveieeieeeeeeeeeeeeeeeeeeeeeeeee e 471 104 10) < 522
SEIXWIILE veeenans 472 10410 KR 523
SEIXWIUSEA ©.vvvvvveeeeeeeeeeeeeirreeeeeeeeeeeerrneee 473 SySReSetChainccoevvvveveeeeeeeiiiiinrreeeeeeen, 525
N D PP 474
SBE teeeie e 474 T
Set_CPU_POWET_MOAE ..ceeeeeeeeeeeeeeeeeeeeereeeeannnns 477 tan 526
B —— 375 e 6
SCClOCkMOUILION ..o 476 TATIR_SetValte ..oovveevorrreoceeerrssieenees 528
SOUMP w1 479 I s 529
SetSerial TATXRValUescooevviniciniciins 480 13 R TR 530
Sexectgxtemgggg """""""""""""""""""" jg % TOLOWET .eevveieeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 531
etVectEXtern3000vevevevereeeeerereeeeenenns
StV ortBxtommd000 433 TOUPPET vevveeeeeeeeurrreeeeeeeeeeeitrreeeeeeeeeennsnneeess 531
SEtVECHINEIT «uvveeeeeeeee s 484 U
sf_getPageCountcooevvuvveeeeeeeeeeeseinnnnnnn.s 486 .
SE_GEtPAZESIZE +vvvereerereeeeseesreseeseseeseeseeseees 486 UpdateTIMErScoevvveeeieieeeieeeeeeeeeeeeeeeeeee 532
SENE v 487 USe32KHZOSC wooiiiiiiiiiiiii 532
SE ANIEDEVICE «rvrvervrerrereeressesesseseeressessseseenen. 488 useClockDivideroooovviiiiiiiiiiii 533
sf:isWriting .. 489 useClockDivider3000 ..., 534
SE_PAZETORAM ..o 489 USEMAINOSC ..ooevvveieeeieeieeeeeeeeeeeeee 535
sf_RAMToPage ''' 490 ULOA veiiiiiiiiiiiieeeeeenerentieeeeeeeesesssssnsnesesesensnes 535
sf_readDeviceRAMcooovvvveveeiiiiieeeeeeeeeennn 491 V
ST 16adPAZE .vvvvrreeeeeeeeeeeeeee e 492
St 1eadRAMooooviiviiiiiiiciciece 493 VAGEtFIeeWd ..o.veevveeeeeeeeeeeeieeeeeeeeeeeeennns 537
sf_writeDeviceRAMcccevveiiiiiiiiiniienn, 494 VAINIE v 538
ST WIIEPAZE .vvvvveeeeeeeeeeeeeirreeeeeeeeeeeevrneees 495 VARELCASEWA oo 539
S WIIteRAM ...oiiiiiiiiiiiii e, 496 VIAM2TOOT +evvneeeeeeeeeeeeeeeeeseeeeeeeeeeeeaeseeenaaeees 536
STSPI_INI oeeeveeierrreeeeeeeeeeeeirreee e e e e e e 496
SIN ceeeiiee e 497 W
s1nh. ... 497 WS TIC +oeommeeeeeeeeeeeeeeeeeeeeeeee e eeeeee oo eeen 542
STPLINEE Leeeieeeiirieeeeeeeeeeeeerreee e e e e eeerrneeees 498 WriteFlasha ... 540
12 rabbit.com Dynamic C Functions

http://www.rabbit.com

WriteF1ash2Arrayccooevvvvviiiiiiiiiiiiinnnnn. 541

WIteUSErBIOCKooevveiviviieeeeeeeeeeeee e 543
WriteUserBIOCKATTAYvvvvveveeeeeeereeeeeeeeennnnnn. 545
WIPOIE .o 547
WIPOIEL .o 548
X

XAIOC covviiiiiiiiiiii 549
XAIIOC_StALS ooeevvvieiiiiiiiiiiiiiiieieeeeeeeee 551
XAVALL ceiiiiiiii 552
xCalculateECC256 ...coovvvvviiiiiiiiiiiiiiiii, 554
XChKCOITeCtECC256 ..ovvvvvrneeeeeeeeeiiiiieeeeennn. 555
XEEHIOAL ©vvvveeeeeeeiiiieeeeeeeeeeeeerrree e e e e e e 556
XEEHNT 1vvveiieeeeeeeiirieeeeeeeeeeeeeiirreeeeeeeeeeenennees 556
XEEtlONG 1oevviieiiiiiiiiiii 557
XIMEM2I00E eeeiiiiiiiiiiiiiieeeieeeeeee e, 558
XMEM2XMEM. .coeiiiieiiiiieeieeeeeeee e, 559
XMEMCNT .oeoiiiiiiiiiiiii 560
XIMEMCINP ...eeeenrnnrrereeeeeeeeeeeisnrreeeeeeeessnnonnees 561
XT@IEASE .ovvviieiiiiiiiiiiiiieee 562
XSEHFlOAt toovviiiiiiiiiiiiii 563
D Tc1511 | AT 563
XSEHIONE +vvvieeeeeeeiirireeeeeeeeeeeerrre e e e e e e 564
D104 | AT 564

Dynamic C Functions

rabbit.com

13

http://www.rabbit.com

14

rabbit.com

Dynamic C Functions

http://www.rabbit.com

PRODUCT MANUAL

Group Listing of Dynamic C Functions

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

A ISPUNCE 1evieiiiiee e 227
ISSPACE coeeeeeeiiiiiieee e e e e et e e 226

Arithmetic ISUPPET coiieeieiiiieeee e e 228
ADS e 32 SSXAZIt oo 298
ZELCTC evvvveeeeiiieeeeeeiree e e et e e e eraee e e 200
ISALE teeeeiiee et 250 D

B Data Encryption

AESAECTYPL .vvvveeeciiieeeeiiiee e 34

Bit Manipulation AESdecryptStreamccceeevveeeennenn. 34
BIT .o 46 AESENCIYPE 1rvvveeeoeeeeeeeeeeeeeeeeeeeeeeeeeee 35
DIt e 45 AESENCryptStreamooovvvoooooooooo 36
RES oottt 419 R — 37
TS wvveeeerurreeesasnereeeennnseeeeannsreeeeannsreeaannns 419 AESinitStream ... 38
SET et 474
SEE teereeete et e ettt e et e e ere e 474 Direct Memory Access (Rabbit 4000,

5000)

Bus Operation (Rabbit 3000, 4000) DMAGIIOC <..ooovveeveeeieseeeseeesreerieeeees 76
disableIObUuscccevveeeeeeiiiiiieeeeeeeeeies 75 DMACOMPIEted ..vnverereerereeereerrreenne. 77
enablelObUSccevvvvveeeriiiieeeeiiee e, 98 DMAhandle2chan ..o 78

c DMAIOE2MEM eeevivveeeeeiiieeeeeiiieeeeeeee 79

DMAIOI2MEM ..eeevnivrieeeeiiiieeeeireeeeneeeen 81

Character DMAI0adBufDescccocevreveecreenrennnnne. 82
1SAINUM .ooviiiiiiecccee e 221 DMAmMatchSetupccceevvveeeeevreeeennnenn. 83
1SAIPhA .evveiieiiiiieeee e 222 DMAMEM2I0€ ...ccevvveeeeerrreeeeirreeeenrennn 84
ISCNLI] v 222 DMAMEM2I01 .vvveeeniiieeiieeeieeeeiieenieeenns 85
ISAIGIt wevvereeeieeeecceeee e 224 DMAMEM2MEM ...ooeveeeeeeiiiiriereeeeeeennnns 86
ISEIAPh Leeeiiiiiiieee e 225 DMAPOIL oo 87
ISIOWET weveiiiiieieeiiiieee e 225 DMAprintBufDesCccccevvvveeeeeeennnnnns 88
ISPIANE ©evviiiieiiiiee e 226 DMADIINtREES ..ccovvvveeeeiiieeeeiieeeeen. 89

Dynamic C Functions rabbit.com 15

http://www.rabbit.com
http://www.rabbit.com/products/dc/

DMASetBufDesccoeeeeeeevviiieiieeeeeennns 90 PREL v 368

DMASEDIIECt ..uvvvvvieeeeeeeeiiiiiieeeeeeeeeaas 91 PIEXE tvvvieieeeeeeeeeiiitreeeeeeeeeeeirrrreeeeaeens 369
DMASsetParametersccceeeeeevveeeeennen. 92 PNEXt_fASt .oevviiiiiieeiiee e 370
DMASEartAutoccceeeeeeevveeeeeireeeeeennnen. 93 pool_appendccoevereeeiiiiireeeiieeees 372
DMASartDIirecteeeevevveeeeeceveeeeennnnen. 94 POOL_INIt woevieeiiiiiieeeiiiee e 373
DMASEOD .ooeeeeeiviiiieeeeeeeecciiriee e e e e e e 95 POOl_linKoooviiiiiiiieeieeeeee, 374
DMAStOPDITeCt ..vvvvveeeeeeeeeiiiiieeeeeeeeenenns 96 pool_xappendcccceeeeeieeiiiiiiriiieeeennn, 375
DMAtMErSEtUP ..vvvvveeeeeeeeiiiriereeeeeeeenens 96 POOL_XINIt oeevieiiiiiiieeee e, 376
DMAUNAIIOC ..veiieeiiiieeeeiiieeeeiiee e 97 PDICV eeeiiieeeeiieeee et ee et e e e e 379
serAdmaOffcccceeevviiiiieiiieeeee, 457 PPIEV_ast ..ooovvviiieiiiieeeiee e, 380
SerAdmMaONcccvvveieeiiieeeeiiee e, 458 PPULIASE ©evviieiiiiie e 381
serBdmaOffcccccoovviiiiiiiiiececee, 457 pputlast_fastcccceeeeeeiiiiiiiiiiiieeeee, 382
serBdmaOnccccoeeeeeiciiiiiiieee e, 458 Preordercoovveeciiiiieeeeeeeeeeieeee e, 383
serCdmaOffccooeiiiiiiiiiiiieee e, 457 PXALlOC weviiiiiiiieee e, 394
$erCdmaOlnccccvveeevcviieeeeiieee e, 458 pxalloc_fastc.veeeeevveeeeeiiiiee e, 395
serDAdmaOffcceeevvviiiiieiiieeee, 457 PXCAIIOC .vvvieieiiiiieeeiiee e 396
serDAmaoncccceeevvviiieeiiieeeee, 458 PXIALSE o 397
serEdmaOffccceiiiiiiiiiiiiieeee e, 457 PXEIrst_fastccocvvvveiieeieeiieiiiieeeee, 398
serEdmaOlncccceeveeiiiiiiiiiieee e, 458 PXITEE wrviiiieeeieeecieee e 399
serFdmaOffccceeiiiiiiiiieece e, 457 pxfree_fastccocevvvveeieeieiiiiiiiieeeeee, 400
serFdmaOnccccceevviiiieniiiieeee, 458 PXIASE ceeeviieeeeiiee e 401
serXdmaOffccoceeevviiiieeiiieeeee, 457 PXIast_fastccveeeeeeiieeeeiiiee e, 402
$erXdmaOncccceeeeeviiireeiiiieee e, 458 PXNEXE eevvieeeeirreeeeeiireeeeesireeeeeiraeeeenans 403

PXNEXt_TASt ..ooeeeiiiiieieeeeeeeeeee e, 404

Dynamic Memory Allocation 1804 (<) SR 405

PAlOC e 346 T T 406
palloc_fastcceeeeeevieeeeiiiiee e, 347
PAVAIL o 348 E
pavail_fastccceevieiiiiiiiie e, 349 ECC
PCAllOC .evviiiiiiieieiiiiieeee e 350

CalculateECC256covovveevveeeniieenieens 51
PISE et 351
PEAISE_fASt c.viviiiceeceeceeceeeee e 352 ChRCOMECECE26 v 32
PITEE v 353 XCaleulateECC236 o 354

XChkCorrectECC256ooevevuveeeennnnnn. 555
pfree_fastccovvveeeviiieieeiie e, 354
PRWIM .ottt 355 Error Hand"ng
Plast oo 363 ertlogFOrMatEntry «...vveeeeeeeeeeereeeeeeenen, 100
plast_fastcccoceiiiiiiiiii 364 errlogFormatRegDumpoveeveeeeenne, 101
PMOVEDEIWERN ..o 365 errlogFormatStackDUumpooeeeen... 101
pmovebetween_fast ..., 367 errlogGetHeaderInfocccccueveveveuennen 99

rabbit.com Dynamic C Functions

http://www.rabbit.com

errlogGetMEeSSagecovvevveeveerveennennen. 102 File Compression
errlogGetNthEntryccceeevvvvveeeennnenn. 100 CloseInputCompressedFile 57
errlogReadHeadercccocveeeviveennnn. 102 CloseOutputCompressedFile 57
EITOT_INESSAZE .vvevvenvenvereerueareaneeneeneeneas 103 CompressFilecoveveveninirieieeeneene 66
EXCEPLION ..evveiiiiieiiieeieeeiee e 104 DecompressFilecovvveeveeeeieeeiiiieennene, 70
ResetErrorLogcooveevvieeiiveenniieennen. 420 OpenlnputCompressedFile 280
OpenOutputCompressedFile 281
Extended Memory ReadCompressedFileccccovvveennnen. 415
XALLOC wevieiiiieeiiieeiee e 550
_XAVAL i 553 File System, FAT
PAAAr oo 343 fat_AutoMountcceveeeeveeeereeenennns 107
paddrDS ... 344 fat_ClOSE ..vveeeeeireeeeeeiiee e 110
paddrSS ..o 345 fat_ CreateDir ...eeeeeeeeeeeeeeeeeeeeeeeeeeene 111
TOOT2XIMEIM e 421 fat_ CreateFile ...coeeeeeeeeeeeeeeeeeeeeeeeeeennnn, 112
XALLOC oiiiiiiiiieee e, 549 fat_ CreateTIMeE ..ueeeeeeeeeeeeeeeeeeeeeeeeeennn, 113
XALOC_StAtS oovveeveeiiiieeeeeeieiiiieeeeee e 551 FAE DICLE ceeeeeeeeeeeee e 114
XAVALL weviiiiiii i 552 fat. EnumDeviICeoovvvvuvveeieeeeeieenen, 115
XEEtFloatocoveiiieiiiiee e 556 fat_ EnumPartitionccccevveeeennen.. 116
XEEHNE Lovviiiiiiiiiiiiiieee e 556 FAL FIlESIZE oo, 117
XEELIONG .oviiiiiiiiiiee e 557 fat. FormatDeviceoeeeevveeveeeeeeeeannee. 118
XIMEM2TOO0L .eeeiiiiiieeeeeeeeeeieeeeeeeeeeans 558 fat_ FormatPartitionccccvveveeeeeeeeennnee. 119
XMEM2XMEM. ..eeeveieeeeiieeeeeeeneeeeeennns 559 FAt_FTEE i 120
XMEMCNT .ooiiiiiiiiiiieee e 560 FAt GELALT e, 121
D:410153101¢310Y o JU USSP 561 fat_ GEtNAME covvvveeeeeeeeeeiiieeeeeeeeeeeenen, 122
XTEIEASE .vvveerieeeiieeeieeeeiee e 562 FAL TN et 123
XSEtIloAt ..ovviiiiiieeie e, 563 fat_ InitUCOSMUWEX ..cevvvvveeeeeeeeeeeennn, 124
XSEHNL ©evvvvieiiiiiiiiieiee e eee e 563 fat LaStACCESS wevveeeeeeeeeeeeeeeeeeeeeeeeeenee, 125
XSEHIONG weviieieiiiiiiiiee e e 564 fat_ LastWIItecoeevvvvviviiniiieeeeeeeeeinnee, 126
XSITIEI wovviviiiiiieceeeeeee e 564 fat_ MountPartitionccccevveeeeevvennnee. 127
E fat_OpPen ...cceeeeeeeiieeeeeiee e 128
fat_OpenDirceeveeeeeeciiiiieeeeeeeeeee, 130
Fast Fourier Transforms fat_PartitionDevicecccceeerrvveeeennnnenn. 131
FRCPIX vvovevevereeeeeeeeeeeseeeee e, 157 fat_Read ..o, 132
FRCPIXINY tovviieiieeiie e 158 fat_ReadDir ... 133
fIreal ..veeeeeeeeeeeeeeeeeeeeee e 159 fat_Seek ..o 135
FRTCAlINY ..o, 160 fat_SETAHT ..o, 137
hanneplX ..oocveeveevierieeieieeie e 208 fat_SPlit ..o 138
hannrealcoocovivenieinieieieeees 209 fat_Statusocooveveii 139
POWETSPECTIUM <. 378 fat_ SyncFileccooceeiviiiinieiiieeeieee 140
Dynamic C Functions rabbit.com 17

http://www.rabbit.com

FAL TNl oo 142 1S SEE IX teeeee e 189
fat_tick .oooooeveeeeeeeieee e 143 FS_SETUP teveeireeeeeiiee et 190
fat_Truncatecccceevevveeeencneeeeennnnen. 144 fS_SYNC tovieeiieieeeee e 192
fat_UnmountDeviceccovvveeeeeeereennns 145 FSEEK wvvvieiieieeieeee e 183
fat_UnmountPartitionccceeeeeennnn. 146 TShift oo, 195
fat_ WIIte oo e, 147 FEEIl oo, 194
FAt XWITIEE weneeeeee e 148 TWIIEE et e e 198
IX_fOrmatccccvvveeeeeeeeeeiiiirneeeeeeeeeeenns 252
File System, FS1
CTEALE .vvveeeveeeceeee e 150 Flash, NAND
fereate_unused ..o.oooeeeeeeeeeeieeieeeeeeeeen. 152 nf_eraseBlocKccccccvvviiiiiiiiiil 269
fdelete .ooooreeeiiiieeee e, 154 nf_getPageCountceeeevvvvvenenennnn. 270
fopen_rdccooiiiiiiiiiiee e, 170 nf_getPageSizeooovveeeieeiiciiiiiiieeeee, 271
fOPEN_WT e 172 nf_initDeVICe ..ocovvvrrieeciiieeeeiieee e, 272
fread .oooeeiieeeeeeee e 174 nf INitDIIVEr oooevvveeeeeeeeeeeeeirreeeeeeee, 274
fs_formatcceevevveeieiiiiieeeeiee e 177 nf_isBusyRBHWcccceveviiiiieinnen. 275
TS_INIE ooreeiiieieeee e 179 nf_isBUSYStatusccccceeeevvevcnirrienneennn. 276
fs_reserve_blockscccovvuveeieeeienienns 181 nf_readPagecccoceveeeieiiiiiiiiiiieeeeen, 277
TSCK i, 181 nf_WritePageccoovvveveeeeeeieiiiiieeeeeene, 278
TSEEK wovvieieeieeiieeeee e 182 nf XD_Detect coovvvvvveeeeeeeeeieiirrreeeeeeenen, 279
§(1=) | RO UURURTRRIN 193
Fwrite 197 Flash, Parallel
flash_erasechipccceeevvvviieeeeenecnnns 161
File System, FS2 flash_erasesectoroeeeeeeeeeeeeeeeeeaann, 162
TClOSE woveeeeeeeeiieeeee e 149 flash_gettype ...uvveeeeeeeeeeiciiiieeeeeeeeeas 163
TCreate .oooeveveerieeeee e 151 flash_initocceevvveeeeeeeiiiiiiiieeeeee e, 164
fereate_unusedooooeeeeviiiiieeiieeeeiieas 153 flash_readccoovveeeeeeeieiiiiiiieeieee e, 165
fdelete ..oooovvveirireeeee e 155 flash_readSectorcccocevvvvveeeeeeeeieinnns 166
31 101 o R 156 flash_sector2Xwindowccceeeeeeennnn. 167
fopen_rdcccooviiiiiiiiiee e, 171 flash_Writesectorccovvuveeereeeereenns 168
TOPEN_WI oot 173 WriteFlash2ccoocvveiiiiiiiiiieeeee, 540
fread .oooveieeeece e, 175 WriteFlash2Arraycooveeeevvveennnennn. 541
f5_formatcccvvveeeeieeeiiiiiinieeeeeeeeeeenns 178
fs_get_flash_IX ...ccoeveeviniireeciieeeee, 184 Flash, SD
fs_get Ix 185 sdspi_debouncecccceevvuvieriiiieniieens 423
£ @Ot IX_SIZE oo 186 sdspi_get_csd ...oceeeviiciiiiiiiee e, 424
N S 187 SASPI_ZE_SCT wevveeeeeeiirieeeee e, 425
fs_get_ram_Ix 188 sdspi_get_Status_regccceeeeeeeeenrnnnenn. 426
o sdspi_getSectorCountcceeueneen... 426

18 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi_init_cardcceeeeeuiiiiiieeeieennee, 427 COS trrrtreeeeeeeeeerrrrreeeeeeeeeiarrrrreaaeeeeeerrrens 69

Sdspi_initDeviceccceevurvereeeeeeeennnee. 428 COSN coiiiiiiiiecee e 69
SASPi_iSWTItingceeeeevvveeeeiiiieeeenennn. 429 AEZ e 72
SASPI_NOtBUSY ..eovevvveeeeiiiieeeeiiee e 429 EXP eererrrreeeirrreeeaarree e e e e e e naaaeeaaraaans 105
sdspi_print_devcccceeevviieiiiiireennnn. 430 fADS v 106
sdspi_process_command 431 FlOOr woiiiiiieee e 169
sdspi_read_Sectorccccceveeeeeeeennnen. 432 Mod .ooeeiii e, 169
sdspi_reset_cardcceevvieiieeeeeennnnne. 433 TEEXP wereeeeieeecee e 176
sdspi_sendingAPccccveeeiiiireennnnenn. 434 1aDS v 236
sdspi_set_block_length 435 IAEXP vvveeeeieeee et 237
sASpi_SetLED ...cccvvvieeciiiieeeiieee e 434 1OZ weeieee e 237
sdspi_write_Sectorccccvvveeeeeeeeennnee. 437 10210 ooiiiiieee e 248
sdspi_WriteContinueccccceeeunnnee. 436 MOAE .oviiiiiiii e 268
o
ST_getPageCountcvvvvvvvvrerrrssssssssnnn 486 POWLO e 377
STgetPageSize i 486 o S, a11
SILE oo 487 e 411
SLNHDEVICE oo 488 FAND eeveseeees oo eeee e sees e 412
SEASWHHNG oo 489 T 412
B 489 SIM eevieeeeeitee e e eeree e e e e e e e erae e 497
ST RAMTOPAZE woovvvrrerreerrrrerereeeeess 490 SINN weviiiiciiee e 497
st_readDeviceRAM ooovverrres 491 SAIT evreeeeeereeeeeetrreeeeireeeeestreeeeeearaeeeans 504
SErCAAPAE woovvvvrrrrrrreerrrrrr s 492 STANA weeeeeieiiieeeriiiee e et e e e e e eiae e 504
SLICAARAM oo 493 B wereeeeseeees e eeeeeseeseesees e 526
SLWHHEDEVICERAM oo 494 IR oo 527
Sf_writePagecccceeeeveiiiieeiiiieeeee. 495
Sf_WIiteRAM ..o 496 G
SESPI_INIt cooveveeeeeeiiee e 496 Global Positioning System
Floating-Point Math 2pS_get_poSitioncccceeeevcvvieeennneenn. 206
BCOS veveeeeeeeeeeeeeeeeeeeeeee e e e eeeenenee e, 32 EPS_ZEL_ULC oviiniiiii 207
ACOT vevivieeeeerereteeseeeseseses e s es et n s, 33 gps_ground_distance ... 207
ACSC veeenrreerrreeeieeenteeesteeesiteeerareeenee e 33 H
ASEC weeeurreerrreerueeenteeenteeeniteeeniteesneeeaee 39
T | RSP SRP 39 HDLC Protocol (Rabbit 3000, 4000,
ALAN .eeiiieeeeeeieeeee e e 40 5000)
ALAN2 ..o 41 HDLCabortE ... 210
CEIl vt 53 HDLCabortFoovviiiiinn, 210

Dynamic C Functions rabbit.com 19

http://www.rabbit.com

/10

HDLCCIOSEE ..cvveeeeeeeeeeeeeeeeeeeeeeeeee 210

HDLCCIOSEFvvvviiiieeeeeeeirieeeeeene, 210
HDLCAropEcoovvviieeciieeeeiieee e 211
HDLCAropFoooevviiieeciieeeeieee e, 211
HDLCerrorEcooovvvveeeiiieeeiieee e, 211
HDLCerrorFccoovvvveiiiiieiviiieeeeee, 211
HDLCextCIockEcooevieeviiniriiinennnnn. 212
HDLCextClockFcooeviiviviiiriiieneennnn. 212
HDLCOpEenEcccovvveeeiiieeeiieeeeee 213
HDLCopenFcccovvveeviiiieeeiieee e, 213
HDLCpeekEccoovviieeiiieeeiieee e, 214
HDLCpPeeKFcvvvviveeeieeieirieeeeeeee, 214
HDLCreceiveEcoveeeieeiieiriiieeeenn. 215
HDLCreceiveFcoocveeieeiiiiiiiieeeeenenn, 215
HDLCsendEcooovvvieeiiiiieeeiieee e, 216
HDLCsendFcoooovvvvieeiieeeeiieee e, 216
HDLCsendingEcccooovvvieeiiieeennee, 217
HDLCsendingFcccccccovvveiiiiiiinnnennn. 217
BitRAPOItEcccooiiiiiiiiiiiiiciiccece 47
BitRAPOItLcooiiiiiiiiiiiiiieceicceee 48
BitWrPortEoooocviiiiiiiieeeeieeee 49
BitWrPortlccooecvviiiiiiiiieeeeiieee e, 50
RAPOIE ..o 413
RAPOIL oo 414
WIPOIE oo, 547
WIPOIL oo, 548

12C Protocol

i2c_check_ackcooeeeevviiieeeiiieeeee, 230
12C_INIE weviiiiiiieeeee e 231
i2c_read_charccccceeeeeeeeieiiiiieeneeen. 231
i2¢_send_ackccoovveeiieiiiiiiiiiieeeee, 232
i2c_send_nakccccceeiiiiiiiiiiiiiiieneen, 232
12C_StArt_tX .eveeeeeciieeeeeiiee e e e 233
12C_StArtW_tX .eveeeeviieeeeiiieeeeeiiiee e 234
12C_StOP_tX eveeeeeciieeeeeiireeeeeiieee e 235

i2c_write_charccceeeeviviiieeeeeiiinns 235
Interrupts
GetVectExtern2000ceeeveuvveeeennnen. 204
GetVectExtern3000ccceeevvvveeeennnnen. 205
GetVectInternccoeeeeevvveeeeeeeeneennns 206
IPIES wereieeeeeeccieee e e e 220
IPSEL weveeeeeeeeeceee e e e 221
SetVectExtern2000cccevveeeeennneennn. 481
SetVectExtern3000cceevveeeeennneennn. 482
SetVectExtern4000cccevveeeeennnennnn. 483
SetVectInternccoeevveeeeeeeeeeccnnnnnnn. 484

log_cleancccvveeeeieeeeiiiiiiieeeee e, 238
10Z2_ClOSE eeeviiiiieeeee e, 239
log_conditionccceeevveeeeniiieeeennen. 240
log_formatccceeeeeveiiieeeniiieeeenee, 241
10Z_MAP oo 242
102 NEXE cooiiiiiiiiiee e 243
1OZ_OPEN ot 244
JOZ_PIEV ooeeiiiiieeee e, 245
10Z_PUL ceeieiieeeeeee e 246
10Z_SEEK oovvviiieeeiiiee et 247

M

MD5
md5_appendcceeeeeeiiiiiieeiieee e, 259
mdS5_fINish cooeeeeeeeeeee e, 260
MAS_ANIE eeeeeeeeee e 259

MicroC/OS-II
(0101310 B <) SR 310
OS_ENTER_CRITICALccccceevvunnnnes 282
OS_EXIT_CRITICALccevvveeeiiinnnnnns 282
OSFIagACCEPt wuvvvereeeeeeeiiiiiieeeeeeeeeinns 283
OSFlagCreateccceeeeecevvveeeeeeeeeeennns 285
OSFlagDelcvvveeieeieiiciiiieeeeeeeeeeens 286

20

rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagPendcooeeevveeiniiiiiieeeeeeeenee, 287 OSTaskChangePriocccccceeeeeeeennnee. 323

OSFIagPoSt ...uvvveeeeeeeeeiciiiieeeee e e, 289 OSTaskCreateccceeeevrvveeeeeeeeennnen. 324
OSFIagQUETY .eceeuvveeeeeiriiee e 290 OSTaskCreateEXtcccvveeeeveeeeennnenn. 325
OSTNIE wvvreeeiiieeeeeieee e 291 OSTaskCreateHookcccevveeeennenn. 326
OSMDBOXACCEPL evvvveeeeerrieeeeirreeeeeeneann 291 OSTaskDelcccovveeeeeriieeeeiiieeeeenn. 327
OSMDbOXCrIeateccceeeuvvvveeeeeeeeeennnnen 292 OSTaskDelHoOKcccccuvvvvvreeeeeennnnne. 328
OSMDBOXDEI ...vvvveieeeeeeiciiiiieeeeeeeeeeeee, 293 OSTaskDeIREqcceeeveuvvrrreeeeeeeeennnnee, 329
OSMbOXPendcceevveuririiiieeeeeeennee, 294 OSTaskIdleHoOKccccvvvvvreeeeeeennnee. 330
OSMDBOXPOSE ..cceevvvieeeiiiieeeeiieee e 295 OSTaskQUETY .cccvvveeeeriieeeeiiee e 330
OSMDBOXPOStOPL ..vvveeeeriieeeeiiiieeeeninie. 296 OSTaskReSUmecccevvveeeecnveeeennneenn. 331
OSMDBOXQUETY ...ovvveeeeiriieeeeiiieeeeeninnnn 297 OSTaskStatHOOKccccvvvveeeciriireenen. 331
OSMemCreateccoeeevvveeeeeeeeeeennnnn. 298 OSTaskStKChKcoeeeuririiiieeeeeennnee, 332
OSMEMGEL ...vvvvvereeeeeeeiiiieeeee e, 299 OSTaskSuspendccceevvvveeeeeeeeennnne. 333
OSMemPULvvvveeeeeeeeeiiiieeeee e, 300 OSTaskSWHOOKccceuvvvvvieeeeeeennnnee, 334
OSMEMQUETYovvveeeiriieeeeiiieeeeeennnn 301 OSTCBINitHOOKceeeeeviieeeeiiiieeenenn. 334
OSMUtEXACCEPL wevvvreeeerireeeeirreeeeeeneann 302 OSTIMEDIY ..ooeeeiiieeeeiiiee e 335
OSMuteXCreatecccvvveeeervveeeennnnn. 303 OSTimeDIyHMSMcccceevvvveeennen. 336
OSMutexDeloeeeeeeeeccnirieieeeeeeeeeenee, 304 OSTimeDIyResumeccceeveeeeeennnnnee. 337
OSMutexPendccceevvvvveeeeeeeeeennnee. 305 OSTImeDIYSEC ..cooeeeeeviriiiiieeeeeeeee, 338
OSMULEXPOSE ..vvvveeeeeeeeiiiiieeeeeeeeeeeenee, 306 OSTIMEGEL ..uvvvvvereeeeeeeciiiieeeee e, 339
OSMUteXQUETY ..vvvveeeeirireeeeireeeeeenenean. 307 OSTIMESEL .ovvveeeerieeeeiieee e 339
OSQACCEPL wvvveeeiriieeeeiieeeeeeieee e 308 OSTIMETICK oveeviriieeeiiieeeeiiee e 340
OSQCIEAte ...vvvvveeeeeeeeeeeireeeeeeeeeeeenne, 309 OSTimeTickHOOKccoevvvveeeeeeeennnnee. 340
OSQFlushoooovviviiiiiii, 311 OSVErsionccccceevvveviiiiiiiii, 341
OSQPENA oo, 312

OSQPOSE oo 313 Miscellaneous

OSQPOSIFIONE ..o 314 heXStrtODYLE ..vvvveeeveriieeeeiiieeeeeiieee e 217
OSQPOSIODE v 315 1ONZIMP oo 248
OSQQUETY ..eevvvviereeeeeeeirieeee e e e 316 GSOTE teveeeeieeeieieieeeeeeeeeeeee e 410
0SSchedLock .. 317 FUNWALCH ..ooiiiiiiiieee e 423
0SSchedUnlock ... 317 SELMP e 479
OSSemACCept ..oovvvvviiiiiieeieiiiieeeeeiinn. 318 Multltasklng

OSSemCreate c.oo.vvevvvimrinnscinisiinnenen, 319 COBEZIN ...vvviiieeiiieeeeieee e 58
OSSemPendcoocivvmiieriinnieriinnnnss 319 COPAUSE ... 67
OSSemPOSE w.ovvvvoiviriririnsinisininsic 320 CORESEL oeeviieeeiiiee et 67
OSSemMQUETY ..oovvvvvviviiiiiiiine 321 CORESUME ...ovvvririreieeeeeiiiiieeeee e, 68
OSSetTickPerSeccvveirvvnisiiunnnnss 322 DeElayMSvveeeiieeeiieeeiieeeiee e 73
OSSHALT weeereeieeniieeeieeeriee e 322 DEIAYSEC oo 74
OSStatInitocecveeevueeiiieeiiiee e 323

Dynamic C Functions rabbit.com 21

http://www.rabbit.com

DelayTicks ...ccocvvvrereeeeeeeecciiieeeeeeeeeeeees 74 R

IntervalMscccoovvveeeeeeeeieiiiiieeeeee, 219
IntervalSecooovvvvvvviiiiiiiiiiii 219 Rabbit 3000, 4000
IntervalTickccovvveeeeeiiiieeeciieee e, 220 disabIelODUS wvvvvvvvvvrrvrrrrrrrrrrrr 3
ISCODONE ...vvvveeeeiiiieeeeiiee e 223 eNbICIOBUS wvvvvvvvvvvvrrrrrrrrrrrrr 98
iISCORUNNINGovvvvviirieeeeeeeiiiiieeeeeeee, 223 servo_alloc_table ..o 438
loopheadccccevvviiiiieieiiiiiiieeeee, 249 5ervo_closedloop ..o 438
LOOPINIE wevvveeieeeeiiiiiiee e, 249 servo_disable_0coocovvmvrivmicrinnnnnne. 439
servo_disable_1cccovvveeeeiiveeeeninennn. 440
N servo_enable_0cccceeeeiiiieeeninnnnn. 441
Number-to-String Conversion servo_enable_1cccceeeeviiiieeeninnnnn. 442
BB oo 199 SEVOBEAL o 443
SErvo_graphccoeeeeiiiiiiiee e, 445
REOA oveviiieeeiie et 218 SOIVO_ Tt oo 446
— e E—
SETVO_IMOVE_LO .evvvreeeerrreeeeiirveeeaaeneeenns 447
SR R
servo_qd_zero_0cccevvveereieeieiininnnen, 449
P servo_qd_zero_1ccccovvvereeieieiinnnnnnn, 449
Partit servo_read_tablecccccoeeiiiiiiinnnnnnn. 450
artitions
mbr_CreateParttion ... 253 e,
mbr_EnumDeVICeooorvvmenniinninnnn. 254 SETVO_SEt_Vel oovviieeeeiiieeeeeiieee e, 453
mbr_FOrmatDevicec..oocvvwwvenenens 255 SEIVO_StatS_IeSetcccvvvvvvereeeeeeeenrnnnnnn. 453
mbr_MountPartitionccccoecvveenve. 256 SEIVO_LOTQUE .evvreeeeeeceerrrreereeeeeeeenvveness 454
mbr_UnmountPartition 257
mbr_ValidatePartitionscc.coo...... 258 Rabbit 3000, 4000, 5000
COf_pPKtETeCeiVeccevvuvvveeeiiiieeeeiniennn, 58
Pulse Width Modulation (Rabbit 3000, cof_pktEsendccceeeeuviiiiiiiiiiieeeiiiene, 59
4000, 50.09) COf_PKtFIreceive .uvvveenvveeeeeiiieeeeeiieenenn 58
PWINLINIE ooiiiiiiiieiciieeeeiee e 392 e 59
PWITL_SEL wvvieiiiiiieeecirieeeeeiiieeeeeereeee e 393 €O SETEEEC oo 60
Q COf_SErEQets ...vvvvviiiiiiiiiiiiieeee e, 61
] cof_SErEputcccovvveeeeiiieeeieee e, 62
?(;‘oao(:;rature Decoder (Rabbit 3000, 4000, cof_SerEputsccceeveevciiieeeiieeeeeieen 63
cof_serEreadcccceevvviviiiiiiieeeeiin, 64
I :
qd_readcooveiieeiiiee e 409 COLSEIFGEIC oo 60
QA_ZETO woveeiieieeeeee e 409 COTSCIFRELS v ol

22 rabbit.com Dynamic C Functions

http://www.rabbit.com

cof_SerFputceeeveieiiviiciiiieieeeeeeeee, 62 DMAMEM2I0€ ..eeevveeeeeeieiriiieeeeeeeeeennnee 84

cOf_SerFputsceeeeieiieeiiiiiiieeeeeeeeeee, 63 DMAMEM2I01 .vvvvereeeeeeeiiiiiieereeeeeeinnnee 85
cof_serFreadcccevvviieevciiieeiiiieens 64 DMAMEM2MEM ...ovvveeeerieeeeeiireeeeneneennn 86
COf_SErFWIIte ..ooovviieeeiiieeeeiiee e, 65 DMADPOIL o 87
HDLCabortEcccvvveeiiiieeeeiieeeee 210 DMADrintBufDesccccvveeeeevvereennnen. 88
HDLCabortFccccceveeeeiiiiiiiiieeeeeeees 210 DMADPINtREES ..oevveeieieeiiiiieeeeeeeeenee, 89
HDLCCIOSEEovvviiieeeeieeiiiirieeeee e, 210 DMASsetBufDescccoeevvviieeeeeeeeennnnee, 90
HDLCCIOSEFuvvviiireieeieeiiiiiieeeeeeee, 210 DMASEDITECt ..vvvvveeeeeeeiiiiiiieeeeeeeeeieeee, 91
HDLCAropEoooeviiiiieeeiiieeeeiieeee 211 DMAsetParametersccc.eeeeevveeeenneen.. 92
HDLCAropFoeveeiiiiieeeiieeeeeiiee e 211 DMASEartAutocceeeeeevveeeeeinreeeennnnn. 93
HDLCerrorEcoocvvieeeeiiieeeeiieeeene, 211 DMASartDirectcceeevveeeeevveeeeennnnnn. 94
HDLCerrorFcovvvveiiiiiiiciiiieeeeeeeas 211 DMASEOD oeevvviirireeeeeeeiciiieeeeeeeeeeeeenees 95
HDLCextCIockEooceeviviiiniiiiiieeeeenns 212 DMAStOPDITeCt ..ceveeeeeeeieriiiieeeeeeeeeeennee, 96
HDLCextCIockFcooceiviiiiiiiiiiieeeeen, 212 DMAIMErSEtUP ..oveveeeeeeerviiieeeeeeeeeeennee 96
HDLCOpenEcccccvvveeeiiiieeeeiiee e 213 DMAUNAIOC ..veeeeeiiiieeeiiiiee e 97
HDLCopenFccccovvveeviiiieeeeiieeeenee, 213 TOOL2VIAM ..eveviieeeeirieeeeeiireeeeeiveee e 420
HDLCpeekEocovvviiiieeiiieeeeiieeeeee 214 serAdmaOffccoeevvviiiieiiiee e, 457
HDLCPEEKFuvvviiiieieeieeiiiiiieeeeeeees 214 serAdmaOlncooeeevvviieeeeeeeeiiiennn. 458
HDLCreceiveEooveiiiiieiiiiiiieeeeeeea, 215 serBdmaOffccccevvviiiiiiiiie. 457
HDLCreceiveFoviiiiiiiiiiiiieieeeeea, 215 serBdmaOnccccevvvieeieeieiiien. 458
HDLCsendEccoocvvivieiiiieeeeieee e 216 serCdmaOffcceeeviiiiiieciiee e, 457
HDLCsendFccooevvvieieiiieeeeiiee e 216 $erCdmaOlnNcceeeeevvviieeeciiiee e, 458
HDLCsendingEcccccovvvieeeeirieeene, 217 serDAdmaOffeeeviviieeiiiee e, 457
HDLCsendingFcccoovviiiiiiiiieeeeen, 217 serDAmaOlnccoecevivieeeeeeeeeiienn. 458
PWIM_INIE .eevvieeieiiiiiiiiiieee e, 392 serEdmaOffooeeeviviieiiiieee 457
PWIN_SEL ©evviiieeeeeeeiiiiiieeeeeeeeeeeirrereeean. 393 SETEAMAON ..viieeeeieeeeeeeeee e, 458
QA_EITOT ooviiiiieeiiee e 407 serFdmaOffcooevvviiiiiiiiiicie, 457
QA_init .oeeeeiieee e 408 serFdmaOncccceceviiieiiiiiiciiiee, 458
qd_readccovvrieeiiiie e 409 serXdmaOffccceeeviiiiiieiiiee e, 457
QAd_ZETO oooeeiieieeee e 409 SErXAMAON ..veveeeeeeeeeee e, 458
VIAM2T00t 1oeiiiicuiiiieereeeeeeeeeiirreeeeeeeenns 536
Rabbit 4000, 5000
DMAAIIOC v, 76 Real-Time Clock
DMAcompletedceeevvveeeeeeiieeeennenn. 77 MKHME ©ovieiiiiieeeeiiee e 266
DMAhandle2chanccccceeevvveeeennnnenn. 78 10014711 RS RURRP 267
DMAIOE2MEM ..cevevieeeeiiiieeeeiiee e 79 1€AA_TIC weveeeeirieeeeeiiie e e 416
DMAIOI2ZMEM ...vvvveeeeeeeeeiiiiieeeeeeeeeenee 81 read_rtc_32KHZeevveiiiiiiiiiiiiiieeeeas 416
DMAIloadBufDescccccvvvvereeeeeeennnnee. 82 IEC_tiMEZONE ...eevvvviiereeeeeeeiiiiireeeeeeeeaans 422
DMAmMmatchSetupccoeeeuvvvvereeeeeeennee. 83 set32kHzDividerccoovvveveeeeeiicnninenn... 475

Dynamic C Functions rabbit.com 23

http://www.rabbit.com

EM_Ld i 529 COf_SErFEete ..vvvvvriiiiiiiiiiiiieeee e, 60
P WT evvviiieeeeeeecciireee e e e e eeeirrreeeeee e 530 COf_SErFEets ...uvvvviiiiiiiiiiiiiieeeee e, 61
update TIMErsScccvveeeeeerereeeiiieeeeeneen. 532 cof_SerFputcccovvveeeciiieeeiieee e, 62
US€32KHZOSC .oovevivveieeeiieeeeeieee e 532 COf_SErFPULS ..ooeeeiviieeeiiiee e, 63
WIIE_TTC tovieirieeeeiiieeeeeieeeeeiiree e e 542 cof_serFreadcccevviviiiiiiiiieeenen, 64
COf_SETFWIIte ..oevevveeeeiiieeeeieee e, 65
S SETACIOSE .evvvveeeeiiieeeiiiee e e 456
Serial Communication serAdatabitsccceeeriivieeeiiiiieeeeieennnn 456
COF_SETAEZELC vevreeereeeereeeeseesese s, 60 serAdmaOffc.coeeeveiiiiiiiieeeee, 457
COF_SETAEZELS vevreeereeeereeeeseeseeseseeseesean. 61 serAdmaOlncccoeeeeeiiieeeiiiiee e, 458
COT_SErAPULC .vvvveeeeeeeeeiiieeeee e e, 62 serAflowcontrolOn ..., 460
COF_SETAPULS +.verveveeeeereeresreereseeeeeeeeene. 63 SETAZELC evvvriiieeeeeeeeecireeee e e e e e e 461
cof_serAreadcccceeevervieeeeiiiieeeenennnn, 64 SETAZEEITOT oot 462
COE_SCTAWIILE v 65 SETAOPEN .evvieeeeiiieeeeeiieeeeeieeeeeeineeenns 463
COf_SErBEELC .vvivviieeeeereeeee e 60 SCTAPAIILY ..oovvveriiiiinircnciinee 464
COF_SEIBEELS vvvrvereeereeeeeseeeeseseeseesenn. 61 SETAPEEK ..vvvveeeeiiiieeeeiie e 465
COF_SEIBPULC «veveeeeeeeereeeeeeee s, 62 SETAPULC evvveeeeeirieeeeeiieeeeeeieeeeeeireeeans 466
COF_SEIBPULS +.veveveeeeeeeereereereeeeeeeeene, 63 SETAPULS evvvirieeeeeeeeeeiiieeeeeeeeeeeiaeeees 467
COE_SEIBIEAd vveeeeeeoeoeoeeoeoeoeee, 64 serArdFlushccccoovviiiiiiiiiiieee, 468
COE_SETBWIIE e 65 SETATAFTEE ..ovvveeiieeeeiiieeeeieee e 468
COF_SEICEELC vrerrrrreeerreseeseeseeseseesesenn. 60 serArdUsedcceeeeeeniieeeeiiiiee e, 469
COF_SEICEELS vrerrvrreeereeseeseeseeseseeseesenn. 61 SETATEAd ..vvvveeeeiiieeeeeiiiee et 470
COF_SEICPULE +veeeeeeeeeereeeeseeeeere s, 62 SerAWIFIushccvvviiiiiiiiieiieee, 471
COF_SETCPULS evevereeeeeeeeeesreereseeeeeeenne. 63 SETAWIFTEE .ovvvviiiiiiiiiieeee e, 471
COF_SETCIEAA v, 64 SETAWIILE .evvveeeeiiieeeeiiiieeeeiieee e 472
COf_SErCWIILE .oeeeuvvieeeeiiiieeeeciiee e, 65 SETAWIUSEd .o 473
COF_SErDEELC e s, 60 SErBClOSE .evvviiiciiiieeeiee e 456
COF_SErDEELS «veveeveeereerreeeereese s, 61 serBdatabitscccceviiieiiiiiiieeein, 456
COF_SErDPULC e, 62 serBdmaOffccoeeviiiiiiiieee, 457
COF_SEIDPULS +everveveeeeeeeereeeeereeeeereeeenne. 63 serBdmaOnccoeeeevviviieieeeeeie, 458
cof_serDreadcccceeeeeuveeeeeiiieeeeeiiennnn, 64 serBflowcontrolOnccooiviiiniinns 460
COE_SEIDWIILE v 65 SETBEELC evvvviiiiiieeeeeeeeee e, 461
COF_SETBEELC vrvrvrieeereeerseeerseseeeeeene. 60 SErBEEtEITOT wovvvviiiieciiiiiieeee e, 462
COF_SEIEEELS wevrvrevereeereeeeeseesesee s, 61 serBopenooocviiiiiiiiiiiieee e, 463
COf_SErEPULC ..vvvevieceieeteeeeeeeree e 62 SErBPArityooeiininiiiiiiie 464
COF_SETEPULS +veveveeeeeeeeeeeseeee e, 63 serBpeekveiieiiiiiieiiie e, 465
COF_SETEICAd vrveeoeeeoeoeoeeoeeeee, 64 SETBPULC evvvieieiiiieeee e 466
COE_SCTEWIIE oo 65 SETBPULS ..evvvviiieieeeeeeieeeee e, 467
serBrdFlushccocoevviiiniiiiieie, 468

24 rabbit.com Dynamic C Functions

http://www.rabbit.com

SEIBIAFTEE ovveeiieeeeeeeeee e 468

serBrdUsedcccceeevvveiiiiiiiieeeeeeee, 469
serBreadccooeiiiiiiieee e, 470
serBWrFlushccccooeviiiiiiiiiece. 471
SerBWIFree ..ooovvviiiiiieiiiieeeieeeee, 471
SETBWIItE ..evvviiiiieeieeeeciiieeee e, 472
serBwrUsedoevveiieiiiiciiiiieeeeeeee, 473
SETCClOSE evvriiiieeeeeeeecireeee e 456
serCdatabitSccccceeveveeeeeiiieeeeennnn. 456
serCdmaOffccoceeeveiiiiieeiieeeee. 457
$erCdmaOlnccceeeeeeiiieeeeiieee e 458
serCflowcontrolOnccccceeeeeeeeennnnee. 460
SETCEELC 1ovveiriiieeeeeeeeeeirree e e e e e 461
SETCEEtEITOT ..vvvvviieeeieeeciiieeee e, 462
serCheckParitycccvveeeevnveeeennnenn. 455
SETCOPEN ..evvvvieeeiiieeeeeiieeeeeeieee e e 463
SETCPATILY .evvvreeeeiiieeeeeiieeeeeeieeee e 464
SETCPEEK i 465
SETCPULC oeeeiiiiieeeeeeeeeeirreee e e e e 466
SETCPULS .eeeeiivrieeeeeeeeeeirre e e e e e 467
SerCrdFlushcccoveieeciiiieeeiieeeeee. 468
SETCIdFIee ..vvvvieeiviieeeciiiee e 468
SerCrdUsedcccvcvveeeeviiieeeeiieeeeeen. 469
serCreadoccovvvveeeeeiieiiiiieeee e, 470
SerCWIFIUShooovviiiiiiiiiiiiiiicceeee, 471
SETCWIFIEe ...vvvvieiiiiiiiiiiiiiieeeee e, 471
SETCWIILE .vvvveeeeeiiieeeeeiieeeeeieee e e 472
SErCWIUSEd .ooveeeivieeeeiieee e 473
SETDCIOSE ..vvvvieeeiiiieeeiee e 456
serDdatabitscccccceeeeeiiiiiiieeeeeeeeeee, 456
serDdmaOffccoeevvviiiiiiiiecceee, 457
serDAmaOlncoeeeeeeiiiiiiiieeeeeeee, 458
serDflowcontrolOffccceeeeennnnee. 459
serDflowcontrolOnccccevveeeennnee. 460
SETDEZELC oovvviieeeeieee e 461
SerDEEtEITOr .oooeiiviiieeiiieeeeieee e 462
SErDOPEN . 463
SErDParity ..ccccvvvveeeeeeeeieiiieeee e 464
SETDPEEK .., 465

Dynamic C Functions

SEDPULC .evvvviiieeeieeeiiiiieee e, 466
SEDPULS evvviiiieieieeeceeee e, 467
serDrdFlushccccoovviiiiiiieieciiee, 468
SErDIAFTEe ..ooovvvviieeeiiiieeeeiieee e 468
serDrdUsedcceeeevevieeeeiiiieeeeiieen, 469
serDreadcccooeeeveviciiiiiieeeeeeeee. 470
serDwrFlushcccocovviviiiiiiiiiine. 471
SErDWIFIEe .oovvviiiiiiiiiiieeee e, 471
SETDWIIE .vvvveeeeiiieeeeiiieee e e 472
SerDWrUsedceeveeeieviieeeiiiiee e, 473
SETECIOSE ..vvviieiiiiieeeiieeeeee e 456
serEdatabitsccccevvvviieieiieiiiiie. 456
serEdmaOffooeeiiiiiieiiiee 457
serEdmaOlncccccevvvvieniiiieiiiiie. 458
serEflowcontrolOffcccceeeeinnennns 459
serEflowcontrolOncccceeeevnnnnnnn, 460
SETEEELC vvviiiiiiiieeeee e 461
SerEgetErrorooovvcviiiiiiieeceeeie. 462
SETEOPEN ..uvvvviieiiiiieiiiiieeee e 463
SETEPArity ..oeeeeviiiieiiciiiiieeeeeeeeeiie, 464
SETEPEEK ..vvvviiiiiiieeeiieeeeeee e 465
SETEPULC .vvvveieeiiieeeeee e 466
SETEPULS .evviiieiiiieeeee e 467
serErdFlushcoooeeviviiiieiieeiiiie. 468
SErErdFreeccccoovvvccviiiiiieeeeeeeiie. 468
serErdUsedoooovvvvcniiiiiieeeieeciieee. 469
serEreadcooovviiieiiiiiieecieee e, 470
serEwrFlushccoooiiiiiiiiiiii, 471
SETEWIFTEe woovoiiiiiieeeiiieeeee e 471
SETEWTItE .evvvvieiiiiieeiiiiieee e, 472
serEwrUsedoooovvvcviiiiieieeceeciie. 473
SETFClOSE ..vvvvvieieiiieeiiiieeee e, 456
serFdatabitscccccevvvveeeeeieiiiiniien.. 456
serFdmaOffccooeivviiiiiieccie, 457
serFdmaOncccoceevvieeiiiiiiceiiee, 458
serFflowcontrolOffccceveevinnennnns 459
serFflowcontrolOncccoceeeeeunnnnen.... 460
SETFEELC v, 461
SErFetEIrorocovvviciiiiiieeeeceeeie. 462
rabbit.com 25

http://www.rabbit.com

SETFOPEN ..ooovviiiiiieiicceeeeee e, 463 cof_pktCsendcoeeveuvivieeeeeeeiinnnnen. 59
SETFParitycccvvveeeeieeieiiciiiieeee e, 464 cof_pktDreceivecccevvvveeeeeeeeeicnnnnnnen. 58
serFpeek .ooovvveiieiiie e, 465 cof_pktDsendc.eeeeeuvieeeiiiiieeeeiienen, 59
SETFPULC oo 466 COf_pPKtETeCeiVeocevvevvieeeeiiiieeeeiiiennn, 58
SETFPULS oo 467 cof_pktEsendccceeeeiiiiiiiiiiieeeeiien, 59
serFrdFlushcccccoovviiiiiiiiiiicices 468 cof_pKtFreceivecooeevvvveeeeeeeeeinnnnen, 58
SEIFrdFree .occvvvvvieeeiiieeciieeeeee e, 468 cof_pktFsendcccoeeeeiiiieeeiiiiiininnen, 59
serFrdUsedeeeeeieiieiiciiiieeeeeeeeeas 469 PKEACIOSE .oooeeeiiiieeeeee e, 356
serFreadcccooovveiiiiiiieeee e, 470 PKEAZEEITOTS .vvvvieeiiiieeeeiieeeeeiiieeeees 356
serFWrFlushccoooviiviiiiiiieiieeeee, 471 pktAinitBuffersccccoeevveeeriiiieeeanns 357
SETFWIFIee ..ovvvvieiiiiiieieieeeeee 471 PREAOPEN ooiiiiiiiieeeiieeeeiee e, 358
SETFWIILE oo, 472 PKEATECEIVE oo, 360
SErFWrUsedvvvveeeiiiiiiiiiiiieeeee e, 473 pktAsendcocoviiiiiiiiiiieeeee, 361
SerXdatabitscceeeeiiiiiiiiiiireeeeeiiains 456 pktAsendingcccceeeeeieiiiiiiiiiiieeeenn, 362
serXdmaOffcoceeevviiiieeiiieeeee, 457 PKREASEtPArItY ...veeeeeeiieeeeiiiee e, 362
$erXdmaOncccceeeeeviiieeeiiiiee e, 458 PKEBCIOSE oveeiiiiiieeeieeeeeee e, 356
serXflowcontrolOffc.ccccvvvereennnen. 459 PKEBEELEITOTS ..vvvieeiiiieeeeiiieeeeciiee e, 356
serXflowcontrolOncccceeeeeeeeenennnns 460 pktBinitBuffersccccoeevevivivennneennn. 357
SEIXEELC tovveiiririiieeeeeeeeecireee e e e e e e 461 pPKtBOpENoooeiiiiiiieeee e, 358
SErXEEtEITOr ..vvvvveeeiiiieiiiiiiieeee e, 462 PKEBIeceiveococvviiieieeieeeeeiiiieeeee, 360
SETXPATILY evvvrreeeiieeeeeiireeeeeireeee e 464 PktBsendccovveiiiiiiiieeeee e, 361
SETXPEEK 1ovvvriiieeiiie e 465 pktBsendingcccceeeeeiiiiiieeiiiieeeens 362
SETXPULC vevrereeeiireeeeeiireeeeeirreeeeeaenens 466 PKEBSEtPArityccccceveeeieriireeeiiieeeenns 362
SEIXPULS eeeeeiiiiieeeeeeeeeeeciiireeeeeeeeeeeaeens 467 PKECCLOSE oooeeeiiiiieeeeee e, 356
serXrdFlushccccccoovviiiiiiiiiieiiiins 468 PKtCEtEITOrS ...ovvvvviieeeeeeeeeciiieeeeeeeee, 356
SEIrXIAFIee ..vvvvvieeeieieeeiiiiieeee e, 468 pktCinitBufferscccccoeeevevvvveenneennn. 357
SerXrdUSedccceevveeeeeiiiieeeciiee e 469 PRECOPEN ooeieiiiiieeiiieeeeiee e, 358
SETXTead ..ovvveieeeiiiee et 470 PKECTECEIVE .evvvveeeiiiieeeeiiiee e 360
SErXWIFIUSh ..oooiiiiiiiieieec e, 471 pKtCsendveveeeiiiiieeeeee e 361
SEIXWIFIEE ..evvviiiieiiiiiiiiiiiieeee e, 471 pktCsendingccccceveeeeeeeeiiiiiiiiieeeenen. 362
SEIXWIILE ooevvviiiieeeeeeeecciiirieeee e e e e e 472 PKtCSetParitycccceeeeeeeeeeccciiiiieeeennn, 362
SErXWIUSEd ...ovvvveeeieiiiiiiiiiieeee e, 473 PKEDCIOSE oo, 356
PKtDEEtEITOrS ...vvvvvvieeeeeeeeeeiiiieeeeeeee, 356

Serial Packet Driver PKEDINIBUFFETSvooooeeeeeeeeeeeeeeeeeeeee 357
COT_PKIATECEIVE wovvvvvvvvrvrrrrrrrsrsrsssrs 58 PKEDOPEN .. 358
COTPKIASEN wrvvvvvvvrvrrrrvrrrrrrrrrs 59 PKEDIECEIVE .evvvreeeiiiieeeeiiiee e 360
e 38 PKEDSENA oo 361
COTPKIBSENd ..o 59 pktDsendingcccceeeeeeeeeiiiiiiiiieeeeennn, 362
COTPKICIECEIVE v 38 PKEDSEtPArIty ...vvvvveeeeeeeeeeeiiiiieeeeene, 362

26 rabbit.com Dynamic C Functions

http://www.rabbit.com

PKEECIOSE ovevvieeiieiieeiieereeee e 356 SPI

PKtEZELEITOTS ..vvvevieeiieiieeiieeiee e 356 SPINIE eveevieeiieeieeeeie e 499
pKtEInitBuffersccoevevviienirennnnne. 357 SPIREAdvveevienrieeeieeieeeee e 500
PKEEOPEN ..eevvieiiiieiieieeeee e 358 SPIWTILE ©ovvevreeieeeieeieeieeeieeie e 501
PKEEIECEIVE oviviiiieiieiieeiieieeie e 360 SPIWIRA ...oovieiiieiieieeieeeeeeee e 502
PKtEsendoooovviiiiiiiiiieei e, 361
PKtEsendingccoeceeeviiiiinieennieenen. 362 Stdio
PKEESCUPATIY oo 362 oS00 1T RS 199
DKEFCLOSE v 356 ZELS 1nitieeeeitee e e e 201
PKEFGELEITONS +rvvoooorooooooeooo 356 KDRIE ©eeiiiieiecieiceece e 236
PKEFINIEBUFRETS oo 357 OULCHTS ..eeeeiiiieiiiieciieeice e 341
I Y 358 OULSEE evveeeeiiieeeiieeeeiteeeieeeeieeeeieee e 342
R 360 1181115 PSR 385
PKEFSEN wvvvoeroeooeeeeoeooeeeeoeoe oo 361 PULChAT .eeiiiiiiieeeeiee e 391
DKEFSENAING ©vrrrrreereevseeeosssesssssssesseenes 362 PULS teeeiieeeeeeeeeeeeeee e e e e e e 391
) e 362 3110151118 SRS 498
SPIANE Lo 503

Servo Control (Rabbit 3000, 4000)
438 String Manipulation

servo_alloc_tablecccccveeeeniiennnnnns
Serv0._ClOSEAIOOD werrrrrvrreeeeesoeesresse 438 memchroccooviiiiiiiiiiieeee e, 261
SErVO. dISADIE_ 0 oo 439 MEMCIND .eeeeeeeeiiirieereeeeeeeeeirrreeeeeeeenns 262
SErVO_ SABIE. 1 oo 440 INEIMCPY wvveeeeerrrreeerirreeeeeirreeeeansreeeennnns 263
B N R 441 MEMIMOVE ..evvvvireeeerreeeeeierreeeeeereeeenennes 264
N T 447 INEMSEL ©vvveeeirireeeeirieeeeeirreeeeeereeeeeeenes 265
N I 443 SEICAL teieeiiiiiieeeeeeeectree e e 505
SEIVO_GIADR ooovvveeeeee oo 445 SEICAT Lot 506
SETVO_IMIE tvvvveeeeeiiieeeeciieeeeeieee e 446 B 507
servo_millirpm2vemdooesreonnoo 446 SETCINPL cvevvieeeeeiiieeeeieeeeeeireeeeeirae e 508
B 447 SITCPY weeeevrrreeeiireeeeeireeeeeetreeeeeseaaeeenns 509
TS U 448 SETCSPI 1evviieeeeiieeeeereeeeeeireee e eivae e 510
N N I 449 SEEIEN oo, 511
N R 449 SEITICAL ceeevvriieeeeeeeeciirree e e e e e e eirraee e 512
e) L 450 SEITCIND evevvvrrieeeeeeeeciiireeeeeeeeeeiraree e 513
N 451 SEINCMPI eevvvvvieeeeeeeeciiireee e e e e 514
L 452 SEITICPY +eevvrreeeeeireeeeeiieeeeesireeeeeeeraeeenns 515
SEIVOL St VL oo 453 SEPDTK ceeeeiiieeeiiiee e 516
e 453 SEITCHT oo 517
e 454 SEISPIL c.iiiiiiieeeeeeeeciirree e e e e e e eiaraee e 518
SEISIE oeieeeiiiieee e e et e et 519

Dynamic C Functions rabbit.com 27

http://www.rabbit.com

SEIEOK wevieeeieeciiiiiiee e e e e eeeciiree e e e e 522 useClockDivider3000ccccvveeeeenen. 534
LOLOWET wvvvveeeeeeeecciiieeee e, 531 USEMAINOSC ..evvvviiieeeeeeeeeciiieeeee e, 535
TOUPPET evveeeeeiiieeeeeiieeeeerrreeeeeirreeeenns 531 Y
String-to-Number Conversion
ALOT 1eiiieii e 42 User Block
. readUserBIocKccceevuvveieeciiieeennen, 417
ALOL 1evvreeeeeeeeiiieee e e e e e eecrr e e e e e e eiaaeeeas 43
readUserBIOCKATTAYc.ceeeeevveeeennnnen. 418
1101 [USSP 44 _
SEIEOA .vvveeeeeiieee e 520 wr?teUserBlock """""""""""""""""" 343
SEIEOL evvieeeeiiee e 523 WHHEUSCTBIOCKAITAY .ovvsvvsvsvens 345
Vv
System
_GetSysMacroIndexcocervereennnnn. 202 VBAT RAM (Rabbit 4000, 5000)
_GetSysMacroValuec.cccoeeenne. 203 TOOT2VIAM vt 420
_syslsSoftResetccoovveiiiiiininnn, 525 VIAM2T00t ©eviviieieeeeeieeeeaeeieeteeeeese e 536
chkHardResetoeeevvveeeeeiiiieeeeineenen, 54
ChKSOftRESEt ..oceevvviieeeiiieeeeiiee e, 54 w
ChKWDTO ...ovviiiiiiiiiiiiiieeeeee e, 55 Watchdogs
clockDoublerOffcccovvveeeieieiiinineen. 56 Disable HW WDT oo 75
clockDoublerOnccoccvveeeeeeeeeinnnnneen. 56 Enable _HW _WDT 98
defineErrorHandlercoooviviininnnss 71 hitwd _ _ .. 218
EXIE teiiiieeiiiie e 105 VdGetFreeWd oo 537
forceSoftResetooovvviiiiiiiiiiinn, 174 VAHItWA .. 538
getdivider19200 ..o 200 VAN oo 538
GetVectEXtern2000ccoovvvviveniene. 204 VdReleaseWdccocoveeveereeceeeeenenne. 539
GetVectExtern3000cccceeeeeeeeeeennnns 205
GetVectInterncoeeeeevveeeeeineeeeennnen. 206
IPIES evvieeeeeiieeeeecree et 220
IPSEL ceevrieeeeeieee e 221
PIEMAIN ..eevviieeieiiiiiiieeeeeeeeeeiirireeeeeeeann 382
set_cpu_power_modecccceeeeeeeennnns 477
set32kHzDividercccovvvveeeeeeeeienns 475
setClockModulationccceeeeeeerennnns 476
SetSerialTATxRValuescccceuueee.. 480
sysResetChainccceevveeeeeiniieeeennnen, 525
TATIR_SetValuecceeevvvveeecerieeeenne, 528
update TIMETSccccvvvveeeeeeeeeiiiiiieeeeeen, 532
use32KHZOSC ...ocvvvvrvieeieeeeeeiiiieeeeeee, 532
useClockDivideruvevvieeeeeicnniieeneennnn. 533
28 rabbit.com Dynamic C Functions

http://www.rabbit.com

PRODUCT MANUAL

1. Function Descriptions

This chapter includes detailed descriptions for Dynamic C API functions. Not all API functions are
included. For example, board-specific functions are described in the board’s user manual.

New releases of Dynamic C often contain new API functions. You can check if your version of Dynamic C
contains a particular function by checking the Function Lookup feature in the Help menu. If you see func-
tions described in this manual that you want but do not have, please consider updating your version of
Dynamic C. To update Dynamic C, go to: www.rabbit.com/products/dc/ or call 1.530.757.8400.

Dynamic C Functions rabbit.com

29

http://www.rabbit.com/products/dc/
http://www.rabbit.com

abs

int abs(int x);

DESCRIPTION

Computes the absolute value of an integer argument.
PARAMETERS
X Integer argument

RETURN VALUE

Absolute value of the argument.

LIBRARY
MATH.LIB

SEE ALSO
fabs

acos

float acos (float x);

DESCRIPTION

Computes the arccosine of real £1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -1 and 1.

RETURN VALUE

Arccosine of the argument in radians.
If x is out of bounds, the function returns 0 and signals a domain error.

LIBRARY
MATH.LIB

SEE ALSO

cos, cosh, asin, atan

30 rabbit.com

Dynamic C Functions

http://www.rabbit.com

acot

float acot(float x):;

DESCRIPTION

Computes the arcotangent of real £1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE

Arccotangent of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

tan, atan

acsc

float acsc(float x):;

DESCRIPTION

Computes the arccosecant of real £1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE

The arccosecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

sin, asin

Dynamic C Functions rabbit.com

31

http://www.rabbit.com

AESdecrypt

void AESdecrypt(char * data, char * expandedkey, int nb, int nk);

DESCRIPTION

Decrypts a block of data using an implementation of the Rijndael AES cipher. The encrypted
block of data is overwritten by the decrypted block of data.

PARAMETERS
data A block of data to be decrypted.

expandedkey A set of round keys (generated by AESexpandKey ()).

nb The block size to use. Block is 4 * nb bytes long.
nk The key size to use. Cipher key is 4 * nk bytes long.
LIBRARY

AES CRYPT.LIB

AESdecryptStream

void AESdecryptStream(AESstreamState * state, char * data, int
count);

DESCRIPTION

Decrypts an array of bytes using the Rabbit implementation of cipher feedback mode. See
Samples\Crypt\AES STREAMTEST. C for a sample program and a detailed explanation
of the encryption/decryption process.

PARAMETERS
state The AESstreamState structure. This memory must be allocated in the
program code before calling AESdecrptyStream():
static AESstreamState decrypt state;
data An array of bytes that will be decrypted in place.
count Size of data array
LIBRARY

AES CRYPT.LIB

32 rabbit.com Dynamic C Functions

http://www.rabbit.com

AESencrypt

void AESencrypt(char * data, char * expandedkey, int nb, int nk);

DESCRIPTION

Encrypts a block of data using an implementation of the Rijndael AES cipher. The block of data
is overwritten by the encrypted block of data.

PARAMETERS
data
expandedkey
nb

nk

RETURN VALUE

None.

LIBRARY
AES CRYPT.LIB

A block of data to be encrypted
A set of round keys (generated by AESexpandKey ())
The block size to use. Block is 4 * nb bytes long

The key size to use. Cipher key is 4 * nk bytes long

Dynamic C Functions

rabbit.com 33

http://www.rabbit.com

AESencryptStream

void AESencryptStream(AESstreamState * state, char * data, int count
) ;

DESCRIPTION

Encrypts an array of bytes using the Rabbit implementation of cipher feedback mode. See
Samples\Crypt\AES STREAMTEST.C for a sample program and a detailed explanation
of the encryption/decryption process.

PARAMETERS
state The AESstreamState structure. This memory must be allocated in the
program code before calling AESencrptyStream():
static AESstreamState encrypt state;
data An array of bytes that will be encrypted in place.
count Size of data array.
LIBRARY

AES CRYPT.LIB

34 rabbit.com Dynamic C Functions

http://www.rabbit.com

AESexpandKey

void AESexpandKey(char * expanded, char * key, int nb, int nk, int
rounds) ;

DESCRIPTION
Prepares a key for use by expanding it into a set of round keys. A key is a “password” to deci-
pher encoded data.
PARAMETERS
expanded A buffer for storing the expanded key. The size of the expanded key is
4*nb *(rounds +1).
key The cipher key, the size should be 4 * nk
nb The block size will be 4 * nb bytes long.
nk The key size will be 4 * nk bytes long.
rounds The number of cipher rounds to use.

RETURN VALUE

None.

LIBRARY
AES CRYPT.LIB

Dynamic C Functions rabbit.com 35

http://www.rabbit.com

AESinitStream

void AESinitStream(AESstreamState * state, char * key, char *
init vector);

DESCRIPTION

Sets up AESstreamState to begin encrypting or decrypting a stream. Each
AESstreamState structure can only be used for one direction. See
Samples\Crypt\AES STREAMTEST. C for a sample program and a detailed explanation
of the encryption/decryption process.

PARAMETERS
state An AESstreamState structure to be initialized. This memory must be
allocated in the program code before calling AESinitStream().
key The 16-byte cipher key, using a null pointer, will prevent an existing key

from being recalculated.

init vector A 16-bytearray representing the initial state of the feedback registers. Both
ends of the stream must begin with the same initialization vector.

RETURN VALUE

None.

LIBRARY
AES CRYPT.LIB

36 rabbit.com Dynamic C Functions

http://www.rabbit.com

asecC

float asec(float x):;

DESCRIPTION

Computes the arcsecant of real £1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE

The arcsecant of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

CcoOs, acos

asin

float asin(float x):;

DESCRIPTION

Computes the arcsine of real £1oat value x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -1 and +1.

RETURN VALUE

The arcsine of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

sin, acsc

Dynamic C Functions rabbit.com

37

http://www.rabbit.com

atan

float atan(float x):;

DESCRIPTION

Computes the arctangent of real £1oat value x.
Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS

x Assumed to be between -INF and +INF.

RETURN VALUE

The arctangent of the argument in radians.

LIBRARY
MATH.LIB

SEE ALSO

tan, acot

38 rabbit.com Dynamic C Functions

http://www.rabbit.com

atan2

float atan2(float y, float x);

DESCRIPTION

Computes the arctangent of real £1oat value y/x to find the angle in radians between the
x-axis and the ray through (0,0) and (x,y).

Note: The Dynamic C functions deg () and rad () convert radians and degrees.

PARAMETERS
Yy The point corresponding to the y-axis
x The point corresponding to the x-axis

RETURN VALUE

If both y and x are zero, the function returns 0 and signals a domain error. Otherwise the arct-
angent of v /x is returned as follows:

Returned Value
, . Parameter Values
(in Radians)
angle x#0,y#0
P12 x=0,y>0
—P1/2 x=0,y<
0 x>0,y=0
PI x<0,y=0
LIBRARY
MATH.LIB
SEE ALSO

acos, asin, atan, cos, sin, tan

Dynamic C Functions rabbit.com

39

http://www.rabbit.com

atof

NEAR SYNTAX: float n atof(char * sptr);
FAR SYNTAX: float f atof(char far * sptr);

Note: By default, atof () is definedto n atof ().

DESCRIPTION
ANSI string to float conversion (UNIX compatible).
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-

brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted floating value.
If the conversion is invalid, xtoxErr is setto 1. Otherwise xtoxErr is set to 0.

LIBRARY
STRING.LIB

SEE ALSO

atoi, atol, strtod

40 rabbit.com Dynamic C Functions

http://www.rabbit.com

atoi

NEAR SYNTAX: int n atoi(char * sptr);
FAR SYNTAX: int f atoi(char far * sptr);

Note: By default, atoi () is definedto n atoi ().

DESCRIPTION
ANSI string to integer conversion (UNIX compatible).
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-

brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted integer value.

LIBRARY
STRING.LIB

SEE ALSO
atol, atof, strtod

Dynamic C Functions rabbit.com

41

http://www.rabbit.com

atol

NEAR SYNTAX: long n _atol(char * sptr);
FAR SYNTAX: long _f atol(char far * sptr);

By default, atol () isdefinedto n atol().

DESCRIPTION
ANSI string to long conversion (UNIX compatible).

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n__ to the function name, e.g., n _strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS

sptr String to convert.

RETURN VALUE

The converted long integer value.

LIBRARY
STRING.LIB

SEE ALSO

atoi, atof, strtod

42 rabbit.com Dynamic C Functions

http://www.rabbit.com

bit

unsigned int bit(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline.

Reads specified bit at memory address. bit may be from 0 to 31. This is equivalent to the fol-
lowing expression, but more efficient:

(*(long *)address >> bit) & 1

PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0 represents the least significant bit

RETURN VALUE

1: Specified bit is set.
0: Bit is clear.

LIBRARY
UTIL.LIB

SEE ALSO
BIT

Dynamic C Functions rabbit.com

43

http://www.rabbit.com

BIT

unsigned int BIT(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline.

Reads specified bit at memory address. bit may be from 0 to 31. This is equivalent to the fol-
lowing expression, but more efficient:

(* (long *)address>>bit) &1

PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0 represents the least significant bit

RETURN VALUE
1: bit is set
0: bit isclear

LIBRARY
UTIL.LIB

SEE ALSO
bit

44 rabbit.com Dynamic C Functions

http://www.rabbit.com

BitRdPortE

root int BitRdPortE(unsigned int port, int bitnumber);

DESCRIPTION

Returns 1 or 0 matching the value of the bit read from the specified external 1/O port.

PARAMETERS
port Address of external parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
0 or 1: The value of the bit read.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdPortE, WrPortE,
BitWrPortE

Dynamic C Functions rabbit.com

45

http://www.rabbit.com

BitRdPortI

int BitRdPortI(int port, int bitnumber);

DESCRIPTION
Returns 1 or 0 matching the value of the bit read from the specified internal I/O port.

PARAMETERS
port Address of internal parallel port data register.
bitnumber Bit to read (0-7).

RETURN VALUE
0 or 1: The value of the bit read.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, WrPortI, BitWrPortI, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

46 rabbit.com Dynamic C Functions

http://www.rabbit.com

BitWrPortE

void BitWrPortE(unsigned int port, char * portshadow, int value, int
bitcode);

DESCRIPTION

Updates shadow register at bitcode with value (0 or 1) and copies shadow to register.

WARNING! A shadow register is required for this function.

PARAMETERS
port Address of external parallel port data register.
portshadow Reference pointer to a variable to shadow the current value of the register.
value Value of 0 or 1 to be written to the bit position.
bitcode Bit position 0—7.
LIBRARY
SYSIO.LIB
SEE ALSO
RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, RdPortE,
WrPortE

Dynamic C Functions rabbit.com 47

http://www.rabbit.com

BitWrPortI

void BitWrPortI(int port, char * portshadow, int value, int
bitcode);

DESCRIPTION

Updates shadow register at position bitcode with value (0 or 1); copies shadow to register.

WARNING! A shadow register is required for this function.

PARAMETERS
port Address of internal parallel port data register.
portshadow Reference pointer to a variable to shadow the current value of the register.
value Value of 0 or 1 to be written to the bit position.
bitcode Bit position 0—7.
LIBRARY
SYSIO.LIB
SEE ALSO
RdPortI, BitRdPortI, WrPortI, BitRdPortE, RdPortE, WrPortE,
BitWrPortE

48 rabbit.com Dynamic C Functions

http://www.rabbit.com

CalculateECC256

long CalculateECC256(void * data);

DESCRIPTION

Calculates a 3 byte Error Correcting Checksum (ECC, 1 bit correction and 2 bit detection capa-
bility) value for a 256 byte (2048 bit) data buffer located in root memory.

PARAMETERS

data Pointer to the 256 byte data buffer

RETURN VALUE

The calculated ECC in the 3 LSBs of the long (i.e., BCDE) result. Note that the MSB (i.e., B)
of the long result is always zero.

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

Dynamic C Functions rabbit.com

49

http://www.rabbit.com

ChkCorrectECC256

void ChkCorrectECC256 (void * data, void * old ecc, void * new_ecc);

DESCRIPTION

Checks the old versus new ECC values for a 256 byte (2048 bit) data buffer, and if necessary
and possible (1 bit correction, 2 bit detection), corrects the data in the specified root memory

buffer.
PARAMETERS
data Pointer to the 256 byte data buffer
old ecc Pointer to the old (original) 3 byte ECC's buffer
new ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

0: Data and ECC are good (no correction is necessary)
1: Data is corrected and ECC is good

2: Data is good and ECC is corrected

3: Data and/or ECC are bad and uncorrectable

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

50 rabbit.com Dynamic C Functions

http://www.rabbit.com

ceil

float ceil(float x):;

DESCRIPTION

Computes the smallest integer greater than or equal to the given number.

PARAMETERS

x Number to round up.

RETURN VALUE

The rounded up number.

LIBRARY
MATH.LIB

SEE ALSO

floor, fmod

Dynamic C Functions rabbit.com

51

http://www.rabbit.com

chkHardReset

int chkHardReset(void);

DESCRIPTION

This function determines whether this restart of the board is due to a hardware reset. Asserting
the RESET line or recycling power are both considered hardware resets. A watchdog timeout
is not a hardware reset.

RETURN VALUE

1: The processor was restarted due to a hardware reset.
0: Ifit was not.

LIBRARY
SYS.LIB

SEE ALSO
chkSoftReset, chkWDTO, sysIsSoftReset

chkSoftReset

int chkSoftReset(void);

DESCRIPTION

This function determines whether this restart of the board is due to a software reset from Dy-
namic C or a call to forceSoftReset ().

RETURN VALUE

1: The board was restarted due to a soft reset.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkWDTO, sysIsSoftReset

52 rabbit.com Dynamic C Functions

http://www.rabbit.com

chkWDTO

int chkWDTO(void);

DESCRIPTION

This function determines whether this restart of the board is due to a watchdog timeout.

Note: A watchdog timeout cannot be detected on a BL2000 or SmartStar.

RETURN VALUE

1: If the board was restarted due to a watchdog timeout.
0: If it was not.

LIBRARY
SYS.LIB

SEE ALSO
chkHardReset, chkSoftReset, sysIsSoftReset

Dynamic C Functions rabbit.com

53

http://www.rabbit.com

clockDoublerOn

void clockDoublerOn(void);

DESCRIPTION

Enables the Rabbit clock doubler. If the doubler is already enabled, there will be no effect. Also
attempts to adjust the communication rate between Dynamic C and the board to compensate for
the frequency change. User serial port rates need to be adjusted accordingly. Also note that sin-
gle-stepping through this routine will cause Dynamic C to lose communication with the target.

LIBRARY
SYS.LIB

SEE ALSO
clockDoublerOff

clockDoublerOff

void clockDoublerOff(void);

DESCRIPTION

Disables the Rabbit clock doubler. If the doubler is already disabled, there will be no effect.
Also attempts to adjust the communication rate between Dynamic C and the board to compen-
sate for the frequency change. User serial port rates need to be adjusted accordingly. Also note
that single-stepping through this routine will cause Dynamic C to lose communication with the
target.

LIBRARY
SYS.LIB

SEE ALSO

clockDoublerOn

54 rabbit.com Dynamic C Functions

http://www.rabbit.com

CloseInputCompressedFile

void CloseInputCompressedFile(ZFILE * ifp):;

DESCRIPTION

Close an input compression file opened by OpenInputCompressionFile (). This file
may be a compressed file that is being decompressed, or an uncompressed file that is being com-
pressed. In either case, this function should be called for each open import ZFILE once it is done
being used to free up the associated input buffer.

PARAMETERS
ifp File descriptor of an input compression ZFILE.

RETURN VALUE

None

LIBRARY
LZSS.LIB

CloseOutputCompressedFile

void CloseOutputCompressedFile(ZFILE * ifp);

DESCRIPTION

Close an output compression file. This file is an FS2 ZFILE which was previously opened with
OpenOutputCompressionFile (). This function should always be called when done
writing to a compression output ZFILE to free up the associated output buffer.

PARAMETERS
ifp File descriptor of an output compression ZFILE.

RETURN VALUE

None

LIBRARY
lzss.lib

Dynamic C Functions rabbit.com 55

http://www.rabbit.com

CoBegin

void CoBegin(CoData * p);
DESCRIPTION
Initialize a costatement structure so the costatement will be executed next time it is encountered.
PARAMETERS
P Address of costatement

LIBRARY
COSTATE.LIB

cof pktXreceive

int cof pktXreceive(void * buffer, int buffer size); /* X is A-F */

DESCRIPTION

Receives an incoming packet. This function returns after a complete packet has been read into
the buffer.

The functions cof pktEreceive () and cof pktFreceive () are available when us-
ing the Rabbit 3000 or Rabbit 4000.

PARAMETERS
buffer A buffer for the packet to be written into.

buffer size Length of the buffer.

RETURN VALUE

>0: The number of bytes in the received packet on success.
0: No new packets have been received.

-1: The packet is too large for the given buffer.

-2: Aneeded test packet function is not defined.

LIBRARY
PACKET.LIB

56 rabbit.com Dynamic C Functions

http://www.rabbit.com

cof pktXsend

void cof pktXsend(void *send buffer int buffer length, char delay);
/* X is A-F */

DESCRIPTION

Initiates the sending of a packet of data. The function will exit when the packet is finished trans-
mitting.

The functions cof _pktEsend () and cof pktFsend () are available when using the
Rabbit 3000 or Rabbit 4000.

PARAMETERS
send buffer The data to be sent.
buffer length Length of the data buffer to transmit.

delay The number of byte times (0-255) to delay before sending data. This is
used to implement protocol-specific delays between packets.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com 57

http://www.rabbit.com

cof serXgetc

int cof serXgetc(void); /* where X is A-F */

DESCRIPTION

This single-user cofunction yields to other tasks until a character is read from port X. This func-
tion only returns when a character is successfully written. It is non-reentrant.

The functions cof serEgetc () and cof serFgetc () may be used with the Rabbit
3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: cof_serXgetc(int port), where “port” is one of the macros
SER_PORT A through SER PORT _F.

RETURN VALUE

An integer with the character read into the low byte.

LIBRARY

RS232.LIB

EXAMPLE

// echoes characters
main() {
int c;
serXopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
wfd ¢ = cof serAgetc() ;
wfd cof serAputc(c);

}

serAclose () ;

58

rabbit.com Dynamic C Functions

http://www.rabbit.com

cof serXgets

int cof serXgets(char * s, int max, unsigned long tmout);
/* where X is A-F */

DESCRIPTION

This single-user cofunction reads characters from port X until a null terminator, linefeed, or car-
riage return character is read, max characters are read, or until tmout milliseconds transpires
between characters read. A timeout will never occur if no characters have been received. This
function is non-reentrant. It yields to other tasks for as long as the input buffer is locked or
whenever the buffer becomes empty as characters are read. s will always be null terminated
upon return. The functions cof serEgets () and cof serFgets () may be used with
the Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: cof_serXgets(int port, ...), where “port” is one of the macros
SER_PORT A through SER_PORT _F.

PARAMETERS
s Character array into which a null terminated string is read.
max The maximum number of characters to read into s.
tmout Millisecond wait period between characters before timing out.

RETURN VALUE

1 if CR or max bytes read into s.
0 if function times out before reading CR or max bytes.

LIBRARY
RS232.LIB
EXAMPLE
main () { // echoes null terminated character strings
int getOk;

char s[16];
serRAopen (19200) ;

loopinit () ;
while (1) {
loophead () ;

costate {
wfd getOk = cof serAgets (s, 15, 20);

if (getOk)
wfd cof_ serAputs(s) ;
else { // timed out: s null terminated, but incomplete
}
}
}
serAclose () ;

Dynamic C Functions rabbit.com

59

http://www.rabbit.com

cof serXputc

void cof serXputc (int c);

DESCRIPTION

/* where X is A-F */

This single-user cofunction writes a character to serial port X, yielding to other tasks when the

input buffer is locked. This function is non-reentrant.

The functions cof serEputc () and cof serFputc () may be used with the

Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: cof_serXputc(int port, ...), where “port” is one of the mac-

ros SER_PORT_A through SER_PORT F

PARAMETERS

c Character to write.

LIBRARY

RS232.LIB

EXAMPLE

// echoes characters
main() {

int c;
serAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
wfd ¢ = cof serAgetc() ;
wfd cof serAputc(c) ;

}

serAclose () ;

60

rabbit.com

Dynamic C Functions

http://www.rabbit.com

cof serXputs

void cof serXputs(char * str); /* where X is A-F */

DESCRIPTION

This single-user cofunction writes a null terminated string to port X. It yields to other tasks for
as long as the input buffer may be locked or whenever the buffer may become full as characters
are written. This function is non-reentrant.

The functions cof _serEputs () and cof serFputs () may be used with the Rabbit
3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: cof_serXputs(port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

PARAMETERS

str Null terminated character string to write.

LIBRARY
RS232.LIB

EXAMPLE

// writes a null terminated character string, repeatedly
main () {
const char s[] = "Hello Rabbit";
serRAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd cof serAputs(s) ;
}
}

serAclose () ;

Dynamic C Functions rabbit.com

http://www.rabbit.com

cof serXread

int cof serXread(void * data,
/* X is A-F */

DESCRIPTION

int length, unsigned long tmout);

This single-user cofunction reads 1ength characters from port X (where X is A, B, C, D, E or
F) or until tmout milliseconds transpires between characters read. It yields to other tasks for
as long as the input buffer is locked or whenever the buffer becomes empty as characters are
read. A timeout will never occur if no characters have been read. This function is non-reentrant.

The functions cof _serEread () and cof serFread () may be used with the

Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: cof_serXread(int port, ...), where “port” is one of the mac-
ros SER_PORT_A through SER_PORT F

PARAMETERS
data
length

tmout

RETURN VALUE

Number of characters read into data.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a block of characters

main() {
int n;
char s[16];
serRPopen (19200) ;
loopinit () ;

Data structure into which characters are read.
The number of characters to read into data.

Millisecond wait period to allow between characters before timing out.

while (1) {
loophead () ;
costate {
wfd n = cof serAread(s, 15, 20);
wfd cof serAwrite(s, n);
}
}
serAclose () ;
}
62 rabbit.com Dynamic C Functions

http://www.rabbit.com

cof serXwrite

void cof serXwrite(void * data, int length); /* where X is A-F */

DESCRIPTION

This single-user cofunction writes 1ength bytes to port X. It yields to other tasks for as long
as the input buffer is locked or whenever the buffer becomes full as characters are written. This
function is non-reentrant.

The functions cof _serEwrite () and cof serFwrite () may be used with the
Rabbit 3000 or Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: cof_serXwrite(int port, ...), where “port” is one of the mac-
ros SER_PORT A through SER_PORT F.

PARAMETERS
data Data structure to write.

length Number of bytes in data to write.

LIBRARY
RS232.LIB

EXAMPLE

// writes a block of characters, repeatedly
main() {
const char s[] = "Hello Rabbit";
serRAopen (19200) ;
loopinit () ;
while (1) {
loophead () ;
costate {
wfd cof serAwrite(s, strlen(s));
}
}

serAclose () ;

Dynamic C Functions rabbit.com 63

http://www.rabbit.com

CompressFile

void CompressFile(ZFILE * input, ZFILE * output);

DESCRIPTION

This function compresses the input file (uncompressed ZFILE, opened with
OpenInputCompressFile ())using the LZ compression algorithm. The result is put into
a user-specified output file (an empty ZFILE, opened with
OpenOutputCompressedFile ()).

The macro OUTPUT _COMPRESSION BUFFERS must be defined with a positive non-zero
value to use CompressFile () ora compile-time error will occur. The default value of
OUTPUT_COMPRESSION BUFFERS is zero.

PARAMETERS
input Input bit file
output Output bit file

RETURN VALUE

None

LIBRARY

LZSS.LIB

SEE ALSO

OpenInputCompressedFile, OpenOutputCompressedFile

64

rabbit.com Dynamic C Functions

http://www.rabbit.com

CoPause

void CoPause(CoData * p);

DESCRIPTION

Pause execution of a costatement so that it will not run the next time it is encountered unless
and until CoResume (p) or CoBegin (p) are called.

PARAMETERS
P Address of costatement

LIBRARY
COSTATE.LIB

CoReset

void CoReset(CoData * p);

DESCRIPTION

Initializes a costatement structure so the costatement will not be executed next time it is encoun-
tered.

PARAMETERS

P Address of costatement

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

65

http://www.rabbit.com

CoResume

void CoResume(CoData * p);
DESCRIPTION
Resume execution of a costatement that has been paused.
PARAMETERS
P Address of costatement

LIBRARY
COSTATE.LIB

66 rabbit.com Dynamic C Functions

http://www.rabbit.com

cos

float cos(float x);

DESCRIPTION

Computes the cosine of real float value x.
Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

x Angle in radians.

RETURN VALUE

Cosine of the argument.

LIBRARY
MATH.LIB

SEE ALSO

acos, cosh, sin, tan

cosh

float cosh(float x):;

DESCRIPTION

Computes the hyperbolic cosine of real float value x. This functions takes a unitless number as
a parameter and returns a unitless number.

PARAMETERS
x Value to compute.

RETURN VALUE

Hyperbolic cosine.
If |x| > 89.8 (approx.), the function returns INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO

cos, acos, sin, sinh, tan, tanh

Dynamic C Functions rabbit.com

http://www.rabbit.com

DecompressFile

void DecompressFile(ZFILE * input, ZFILE * output);

DESCRIPTION

This is the expansion routine for the LZSS algorithm. It performs the opposite operation of
CompressFile (). The input file (a compressed ZFILE, opened with
OpenInputCompressedFile ())is decompressed to the output file (an empty FS2
ZFILE, opened with OpenOutputCompressedFile ()).

PARAMETERS
input Input bit file
output Output bit file

RETURN VALUE

None

LIBRARY
LZSS.LIB

68 rabbit.com Dynamic C Functions

http://www.rabbit.com

defineErrorHandler

void defineErrorHandler(void * errfcn);

DESCRIPTION

Sets the BIOS function pointer for runtime errors to the function pointed to by errfcn. This
user-defined function must be in root memory. Specify root at the start of the function defini-
tion to ensure this. When a runtime error occurs, the following information is passed to the error
handler on the stack:

Stack Position Stack Contents
SP+0 Return address for exceptionRet
SP+2 Error code
SP+4 0x0000 (can be used for additional information)
SP+6 XPC when exception () was called (upper byte)
SP+8 Address where exception () was called
PARAMETERS
errfcn Pointer to user-defined run-time error handler.
LIBRARY
SYS.LIB

Dynamic C Functions rabbit.com

69

http://www.rabbit.com

deg

float deg(float x);

DESCRIPTION

Changes f1loat radians x to degrees
PARAMETERS
x Angle in radians.

RETURN VALUE
Angle in degrees (a £1oat).

LIBRARY
MATH.LIB

SEE ALSO

rad

70 rabbit.com Dynamic C Functions

http://www.rabbit.com

DelayMs

int DelayMs(long delayms);

DESCRIPTION

Millisecond time mechanism for the costatement wa it for constructs. The initial call to this
function starts the timing. The function returns zero and continues to return zero until the num-
ber of milliseconds specified has passed.

PARAMETERS

delayms The number of milliseconds to wait.

RETURN VALUE

1: The specified number of milliseconds have elapsed.
0: The specified number of milliseconds have not elapsed.

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

71

http://www.rabbit.com

DelaySec

int DelaySec(long delaysec);

DESCRIPTION

Second time mechanism for the costatement wait for constructs. The initial call to this func-
tion starts the timing. The function returns zero and continues to return zero until the number of
seconds specified has passed.

PARAMETERS

delaysec The number of seconds to wait.

RETURN VALUE

1: The specified number of seconds have elapsed.
0: The specified number of seconds have not elapsed.

LIBRARY
COSTATE.LIB

DelayTicks

int DelayTicks(unsigned ticks);

DESCRIPTION

Tick time mechanism for the costatement wa it for constructs. The initial call to this function
starts the timing. The function returns zero and continues to return zero until the number of ticks
specified has passed.

1 tick = 1/1024 second.
PARAMETERS

ticks The number of ticks to wait.

RETURN VALUE

1: The specified tick delay has elapsed.
0: The specified tick delay has not elapsed.

LIBRARY
COSTATE.LIB

72 rabbit.com Dynamic C Functions

http://www.rabbit.com

Disable HW WDT

void Disable HW WDT(void);

DESCRIPTION

Disables the hardware watchdog timer on the Rabbit processor. Note that the watchdog will be
enabled again just by hitting it. The watchdog is hit by the periodic interrupt, which is on by
default. This function is useful for special situations such as low power “sleepy mode.”

LIBRARY
SYS.LIB

disableIObus

void disableIObus(void);

DESCRIPTION

This function disables external I/O bus and normal data bus operations resume on the Rabbit
3000 or Rabbit 4000.

The external I/O bus must be disabled during normal bus operations with other devices and must
be enabled during any external I/O bus operation.

This function is non-reentrant.
Port A and B data shadow register values are NOT saved or restored in this function call.

Parallel port A is set to a byte-wide input and parallel port B data direction register (PBDDR)
is set to an unknown state, which must be set by the user.

LIBRARY
ExternIO.LIB (was in R3000.LIB prior to DC 10)

SEE ALSO
enableIObus

Dynamic C Functions rabbit.com 73

http://www.rabbit.com

DMAalloc

dma chan t DMAalloc(char channel mask, int highest);

DESCRIPTION

This function returns a handle to an available channel. The handle contains the channel number
and a validation byte to prevent use of an old handle after deallocation.

PARAMETERS
channel mask Mask of all the acceptable channels to choose from.

highest Bool indicating whether to search for an available channel from 8 or
from 0.

RETURN VALUE

Returns a handle to a DMA channel if one is available. If none are available it returns
DMA CHANNEL_ NONE.

LIBRARY
DMA.LIB

SEE ALSO
DMAunalloc, DMAhandle2chan

74 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAcompleted

int DMAcompleted(dma chan t handle, unsigned int * len);

DESCRIPTION

This function checks to see if a channel is finished with its DMA operation. If complete, the
number of bytes transferred in the last operation is returned in * 1en (if 1en is not NULL), and
1 is returned.

PARAMETERS
handle Handle for channel to check
len Pointer to the value to be filled with the number of bytes last transferred

RETURN VALUE

1: DMA operation is complete
0: Allocated channel has never been used or is currently running
-EINVAL: Invalid handle

LIBRARY
DMA.LIB

SEE ALSO
DMAstop

Dynamic C Functions rabbit.com

75

http://www.rabbit.com

DMAhandle2chan

int DMAhandle2chan(dma chan t handle);

DESCRIPTION

This function checks the validity of a handle and returns the channel number if it is valid.

PARAMETER

handle Handle to convert to channel number

RETURN VALUE

0-7: Valid channel number
DMA CHANNEL_ NONE: The channel is invalid

LIBRARY
DMA.LIB

SEE ALSO
DMAalloc, DMAunalloc

76 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAioe2mem

int DMAioe2mem(dma chan t handle, dma addr t dest, unsigned int src,

unsigned int len,

DESCRIPTION

unsigned int flags);

This function performs an immediate DMA operation from external I/O to memory.

PARAMETERS
handle Handle for channel to use in transfer
dest Memory destination address
src External I/O location source address
len Length to send (cannot equal zero)
flags Various flag options.

L]

DMA F REPEAT indicates that the transfer will be a cycle

DMA F INTERRUPT indicates an interrupt will be triggered at the
completion of the transfer. The interrupt vector and function must
be set up in the user's code.

DMA F LAST SPECIAL (only for Ethernet or HDLC peripherals)
Internal Source: Status byte written to initial buffer descriptor before
last data.

Internal Destination: Last byte written to offset address for frame
termination.
All Others: no effect.

DMA F_ SRC_DEC only for transfers with memory source. Indi-
cates the source address should be decremented.

DMA F DEST DEC only for transfers with memory destination. In-
dicates the destination address should be incremented.

DMA F_ STOP_MATCH indicates whether or not to stop the dma
transfer when a character is reached. The match byte and mask
should have previously been set by calling the
DMAmatchSetup () function.

DMA F_ TIMER indicates the DMA timer will be used. The divisor
should have already been set by calling the DMAt imerSetup ()
function.

DMA F TIMER 1BPR indicates that the timed transfers will send
one byte per request instead of the entire descriptor

Dynamic C Functions

rabbit.com

77

http://www.rabbit.com

DMAioe2mem (cont’d)

Only one of the following flags (if any) should be set. They indicate that
the DMA transfer is gated using the named pin:

+ DMA_F PD2,DMA F_PE2,DMA F PE6,DMA F PD3,
DMA _F PE3,DMA _F_PE7
The following flags indicate the polarity of the gating signal:

« DMA_F_FALLING (default), DMA F RISING DMA_F_LOW,
DMA_F_HIGH
RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

78 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAioi2mem

int DMAioi2mem(dma chan t handle, dma addr t dest, unsigned int src,
unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from internal I/O to memory.

PARAMETERS
handle Handle for channel to use in transfer
dest Memory destination address
src Internal I/O location source address
len Length to send (cannot equal zero)
flags Various flag options. See DMAioe2mem () for a full list of flags and their

descriptions.

RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

Dynamic C Functions rabbit.com 79

http://www.rabbit.com

DMAloadBufDesc

void DMAloadBufDesc(int dmaChannel, dma addr_ t * bufPtr);

DESCRIPTION

This function loads the appropriate DMA Initial Address Registers for the requested DMA
channel with the address provided.

PARAMETERS
dmaChannel DMA channel number to load

bufPtr Pointer to variable containing physical address of DMA buffer

LIBRARY
DMA.LIB

SEE ALSO
DMAsetBufDesc, DMAsetDirect

80 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAmatchSetup

int DMAmatchSetup(dma chan t handle, int mask, int byte);

DESCRIPTION

This function sets up the mask and match registers for the DMA. These registers are only used
when the DMA F STOP_MATCH flag is passed to the transfer function.

PARAMETERS
handle Handle for the DMA channel.
mask Mask for termination byte (parameter 3). A value of all zeros disables the
termination byte match feature. A value of all ones uses the full termination
byte for comparison.
byte Byte that, if matched, will terminate the buffer.
LIBRARY
DMA.LIB
SEE ALSO

DMAmem2mem, DMAtimerSetup

Dynamic C Functions rabbit.com

81

http://www.rabbit.com

DMAmem2ioe

int DMAmem2ioe(dma chan t handle, unsigned int dest, dma_addr t src,
unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from memory to external I/O.

PARAMETERS
handle Handle for channel to use in transfer
dest External I/O destination address
src Memory location source
len Length to send (cannot equal zero)
flags Various flag options. See DMAioce2mem () for a full list of flags and their

descriptions.

RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

82 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAmem2ioi

int DMAmem2ioi(dma chan t handle, unsigned int dest, dma_addr t src,
unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from memory to internal I/O.

PARAMETERS
handle Handle for channel to use in transfer
dest Internal I/O destination address
src Memory location source
len Length to send (cannot equal zero)
flags Various flag options. See DMAioe2mem () for a full list of flags and their

descriptions.

RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO
DMAmem2mem, DMAcompleted, DMAstop

Dynamic C Functions rabbit.com 83

http://www.rabbit.com

DMAmem2mem

int DMAmem2mem(dma chan t handle, dma addr t dest, dma addr t src,
unsigned int len, unsigned int flags);

DESCRIPTION

This function performs an immediate DMA operation from memory to memory.

PARAMETERS
handle Handle for channel to use in transfer
dest Memory destination address
src Memory location source address
len Length to send (cannot equal zero)
flags Various flag options. See DMAioce2mem () for a full list of flags and their

descriptions.

RETURN VALUE

0: Success
-EINVAL: Invalid handle
-EBUSY: Resources are busy

LIBRARY
DMA.LIB

SEE ALSO
DMAcompleted, DMAstop

84 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMApoll

word DMApoll(int dmaChannel, word * bufCount) ;

DESCRIPTION

This is a low-level DMA function for determining how much data has been transferred by the
specified DMA channel. Since DMA is asynchronous to the CPU, this returns a lower bound
on the actually completed transfer.

IMPORTANT: Owing to the way the DMA channels are designed, this function
will not give a valid result for the first buffer in a linked list or chain, or if there is
only one buffer defined (with no link or array sequencing). To get around this lim-
itation, define the first buffer as a dummy transfer of one byte from memory to the
same memory, and link this initial dummy buffer to the desired list or array of
buffer descriptors. Take the dummy buffer into account when interpreting the
bufCount value returned. If you service an interrupt from the dummy buffer
completion, you will know when it is valid to poll.

This function is mainly intended for endless DMA loops (e.g., receiving into a cir-
cular buffer from a serial port) thus the above restriction should not be too onerous
in practice.

PARAMETERS
dmaChannel DMA channel number to poll (0-7).

bufCount Pointer to variable in which the completed buffer count will be written. The
return value contains the number of bytes remaining (not yet transferred)
in this buffer. The buffer count wraps around modulo 256.

RETURN VALUE

The number of bytes remaining in the buffer indicated by *bufCount. This ranges from 0, if
completed, up to the total size of the buffer, if not yet started. If the size of any single transfer
was 65536 bytes, then the return value is ambiguous as to whether it means “0” or “65536.”

LIBRARY
DMA.LIB

SEE ALSO
DMAloadBufDesc, DMAsetDirect

Dynamic C Functions rabbit.com

85

http://www.rabbit.com

DMAprintBufDesc

void DMAprintBufDesc(void * dr, long dp):

DESCRIPTION

This is a debugging function only. It formats and prints the contents of the buffer descriptor at
*dr or *dp, using bit 6 of the chanControl field to determine whether to assume a short
or long format. If dr is not NULL, then the buffer descriptor is in root memory and *dr is used.
Otherwise, dp is assumed to be the physical address of the buffer descriptor in xmem.

PARAMETERS
dr Pointer to buffer descriptor in root memory.

dp Address of buffer descriptor in physical memory.

LIBRARY
DMA.LIB

SEE ALSO
DMAprintRegs

86 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAprintRegs

void DMAprintRegs(int chan, int masters);

DESCRIPTION

This is a debugging function only. This prints the values of the hardware registers for the spec-
ified channel. If masters is true, then it also prints the values of the master DMA control regis-
ters.

Note that the Source and Destination Address registers are write only and read as zero.

PARAMETERS
chan Channel number to print
masters A bool to determine whether or not to print out the master registers shared
between all channels
LIBRARY
DMA.LIB
SEE ALSO
DMAprintBufDesc

Dynamic C Functions rabbit.com

87

http://www.rabbit.com

DMAsetBufDesc

int DMAsetBufDesc(char chanControl, unsigned int bufLength,
dma addr t srcAddress, dma addr t destAddress, dma addr t
linkAddress, dma addr t bufPtr, int bufSize);

DESCRIPTION

This function loads a DMA buffer descriptor in memory with the values provided. The buffer
needs to be described as either 12 or 16 bytes in size.

PARAMETERS
chanControl DMA channel control value
bufLength DMA buffer length
srcAddress DMA source address
destAddress DMA destination address
linkAddress DMA link address (of next buffer descriptor)
bufPtr Physical address of buffer descriptor to fill

bufsize Size of buffer descriptor in bytes (12 or 16 only)

RETURN VALUE

0: Success
-EINVAL: Error

LIBRARY
DMA.LIB

SEE ALSO
DMAloadBufDesc, DMAsetDirect

88 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAsetDirect

void DMAsetDirect(int channel, char chanControl, unsigned int
bufLength, dma addr t srcAddress, dma addr t destAddress,
dma addr t linkAddress);

DESCRIPTION

This function sets up a DMA channel with the values provided.

PARAMETERS
channel
chanControl
bufLength
srcAddress
destAddress

linkAddress

LIBRARY
DMA.LIB

SEE ALSO

DMA channel to set

DMA channel control value
DMA buffer length

DMA source address

DMA destination address

DMA link address (of next buffer descriptor)

DMAloadBufDesc, DMAsetBufDesc

Dynamic C Functions

rabbit.com

89

http://www.rabbit.com

DMAsetParameters

int DMAsetParameters(unsigned int transfer pri, unsigned int
interrupt pri, unsigned int inter dma pri, unsigned int
chunkiness, unsigned int min cpu pct);

DESCRIPTION

This function sets up DMA parameters. The chunkiness parameter determines the amount
of CPU time needed to transfer data according to this chart:

chunkiness 1 2 3 4 8 16 32 64

CPU_cycles 11 15 19 23 39 71 135 | 263

Themin cpu_ pct parameter determines the minimum time between bursts and is calculated
with this formula:

_ (CPU_cycles - min_cpu_pct)

free ti
cpu free time (100 — min_cpu_pct)

This is then rounded up to the nearest value out of 12, 16, 24, 32, 64, 128, 256, or 512.

PARAMETERS

transfer pri DMA transfer priority (0, 1, 2 or 3), transfers can occur when the CPU
interrupt priority is less than or equal to this value.

interrupt pri DMA interrupt priority (0, 1, 2, or 3); a value of 0 will disable the
DMA interrupts.

inter dma pri Relative prioritization amongst the DMA channels. It is one of the fol-
lowing constants:

* DMA IDP FIXED - fixed priorities, with higher channel numbers
taking precedence;

« DMA IDP ROTATE_ FINE - priorities are rotated after every byte
transferred;
* DMA IDP ROTATE_COARSE - priorities rotated after every trans-

fer request, the size of which is determined by the “chunkiness” pa-
rameter.

chunkiness Maximum transfer burst size. Allowed values are 1, 2, 3, 4, 8, 16, 32,
or 64. Other numbers will be rounded down to the nearest allowed val-
ue.

90 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAsetParameters (cont’d)

min cpu pct A number between 0 and 100 describing the minimum (worst-case)
relative amount of time that the CPU will control the bus versus the
DMA time. Internally, this function uses this figure to determine the
'minimum clocks between bursts' hardware setting. The figure will be
rounded in favor of the CPU, up to the maximum possible hardware
setting.

RETURN VALUE

0: Success
-EINVAL: for an error

LIBRARY
DMA.LIB

DMAstartAuto

void DMAstartAuto(int channel);

DESCRIPTION
This function is defined to the following:

WrPortI (DMALR, NULL, 1 << channel);

Start (using auto-load) the corresponding DMA channel, using the buffer descriptor in memory
addressed by the Initial Address Register. This command should only be used after the Initial
Address has been loaded.

PARAMETER

channel DMA channel (obtainable through DMAhandle2chan ())

LIBRARY
DMA.LIB

SEE ALSO
DMAstartDirect, DMAstopDirect

Dynamic C Functions rabbit.com 91

http://www.rabbit.com

DMAstartDirect

void DMAstartDirect(int channel);

DESCRIPTION

This function is defined to the following:
WrPortI (DMCSR, NULL, 1 << channel) ;

Start (or restart) the corresponding DMA channel using the contents of the DMA channel reg-
isters. This command should only be used after all the DMA channel registers have been loaded.

PARAMETER

channel DMA channel (obtainable through DMAhandle2chan ())

LIBRARY
DMA.LIB

SEE ALSO
DMAstartAuto, DMAstopDirect

92 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAstop

int DMAstop(dma chan t handle);

DESCRIPTION

Stop a DMA operation started with one of the DM AmemZ2ioe series functions.
DMAcompleted () will return TRUE after for an operation stopped with this function, but
with less data length than the original request. It is OK to stop an operation that has currently
completed; this has no effect. DMAcompleted () may be called to determine the actual
amount of data transferred.

PARAMETER

Handle for channel to stop.

RETURN VALUE

0: Success
-EINVAL: Invalid handle

LIBRARY
DMA.LIB

SEE ALSO
DMAcompleted, DMAstopDirect

Dynamic C Functions rabbit.com

93

http://www.rabbit.com

DMAstopDirect

void DMAstopDirect(int channel);

DESCRIPTION

This function is defined to the following:
WrPortI (DMHR, NULL, 1 << channel) ;

Halt the corresponding DMA channel. The DMA registers obtain the current state and the DMA
can be restarted using the DMCSR.

PARAMETER

channel DMA channel (obtainable through DMAhandle2chan ())

LIBRARY
DMA.LIB

SEE ALSO
DMAstartAuto, DMAstartDirect

DMAtimerSetup

void DMAtimerSetup(unsigned int divisor);

DESCRIPTION

This function sets up the DMA 16-bit divisor. To use the divisor, the DMA_ F_ TIMER flag must
be passed to the transfer function.

PARAMETER

divisor 16-bit divisor for the DMA timer

LIBRARY
DMA.LIB

SEE ALSO
DMAmem2mem, DMAmatchSetup

94 rabbit.com Dynamic C Functions

http://www.rabbit.com

DMAunalloc

int DMAunalloc(dma chan t handle);

DESCRIPTION
This function deallocates a handle, effectively closing the DMA channel to which it was asso-
ciated.

PARAMETER
handle Handle for DMA channel; returned by DMAalloc ().

RETURN VALUE

0: Success
-EINVAL: Error

LIBRARY
DMA.LIB

SEE ALSO
DMAalloc, DMAhandle2chan

Dynamic C Functions rabbit.com

95

http://www.rabbit.com

Enable HW WDT

void Enable HW WDT(void);

DESCRIPTION
Enables the hardware watchdog timer on the Rabbit processor. The watchdog is hit by the peri-
odic interrupt, which is on by default.

LIBRARY
SYS.LIB

enableIObus

void enableIObus(void);

DESCRIPTION

This function enables external I/O bus operation on the Rabbit 3000 or Rabbit 4000. The exter-
nal I/O bus must be enabled during any external I/O bus operation and disabled during normal
bus operations with other devices.

Parallel port A becomes the 1/O data bus and parallel port B bits 7:2 becomes the I/O address
bus.

This function is non-reentrant.
Port A and B data shadow register values are NOT saved or restored in this function call.
If the macro PORTA AUX IO has been previously defined, this function should not be called.

LIBRARY
ExternIO.LIB (was in R3000.LIB prior to DC 10)

SEE ALSO
disableIObus

96 rabbit.com Dynamic C Functions

http://www.rabbit.com

errlogGetHeaderInfo

root char* errlogGetHeaderInfo(void);

DESCRIPTION

Reads the error log header and formats the output.

When running stand alone (not talking to Dynamic C), this function reads the header directly
from the log buffer. When in debug mode, this function reads the header from the copy in flash.

When a Dynamic C cold boot takes place, the header in RAM is zeroed out to initialize it, but
first its contents are copied to an address in the BIOS code before the BIOS in RAM is copied
to flash. This means that on the second cold boot, the data structure in flash will be zeroed out.
The configuration of the log buffer may still be read, and the log buffer entries are not affected.

Because the exception mechanism resets the processor by causing a watchdog time-out, the
number of watchdog time-outs reported by this functions is the number of actual WDTOs plus
the number of exceptions.

RETURN VALUE

A null terminated string containing the header information:

Status Byte: 0
#Exceptions: 5

Index last exception: 5
#SW Resets: 2

#HW Resets: 2

#WD Timeouts: 5

The string will contain “Header checksum invalid” if a checksum error occurs. The meaning of
the status byte is as follows:

bit 0 - An error has occurred since deployment
bit 1 - The count of SW resets has rolled over.
bit 2 - The count of HW resets has rolled over.
bit 3 - The count of WDTOs has rolled over.

bit 4 - The count of exceptions has rolled over.
bit 5-7 - Not used

The index of the last exception is the index from the start of the error log entries. If this index
does not equal the total exception count minus one, the error log entries have wrapped around
the log buffer.

LIBRARY
ERRORS.LIB

Dynamic C Functions rabbit.com

http://www.rabbit.com

errlogGetNthEntry

root int errlogGetNthEntry(int N);

DESCRIPTION

Loads errLogEntry structure with Nth entry of the error buffer. This must be called before

the functions below that format the output.

PARAMETERS

N Index of entry to load into errLogEntry

RETURN VALUE

0: Success, entry checksum okay.
-1: Failure, entry checksum not okay.

LIBRARY
ERRORS.LIB

errlogFormatEntry

root char* errlogFormatEntry(void);

DESCRIPTION

Returns a null terminated string containing the basic information contained in errLogEntry:

Error type=240

Address = 00:16aa

Time: 06/11/2001 20:49:29
RETURN VALUE

The null terminated string described above.

LIBRARY
ERRORS.LIB

98 rabbit.com

Dynamic C Functions

http://www.rabbit.com

errlogFormatRegDump

root char* errlogFormatRegDump(void);

DESCRIPTION
Returns a null terminated string containing a register dump using the data in errLogEntry:
AF=0000,AF'=0000
HL=00f0,HL'=15e3
BC=16ce,BC'=1600
DE=0000,DE'=1731
IX=d3f1l,IY =0560
SP=d3eb,XPC=0000
RETURN VALUE

The null terminated string described above.

LIBRARY
ERRORS.LIB

errlogFormatStackDump

root char * errlogFormatStackDump(void);

DESCRIPTION
Returns a null terminated string containing a stack dump using the data in errLogEntry.
Stack Dump:
0024,04f1,
d378,cl4e,
c400,a108,
2404,0000,
RETURN VALUE

The null terminated string describe above.

LIBRARY
ERRORS.LIB

Dynamic C Functions rabbit.com

http://www.rabbit.com

errlogGetMessage

root char * errlogGetMessage(void);

DESCRIPTION

Returns a null terminated string containing the 8 byte message in errLogEntry.

RETURN VALUE

A null terminated string.

LIBRARY
ERRORS.LIB

errlogReadHeader

root int errlogReadHeader(void);

DESCRIPTION

Reads error log header into the structure errlogInfo.

RETURN VALUE

0: Success, entry checksum OK.
- 1: Failure, entry checksum not OK.

LIBRARY
ERRORS.LIB

100 rabbit.com Dynamic C Functions

http://www.rabbit.com

error message

unsigned long error message(int message index);

DESCRIPTION

Returns a physical pointer to a descriptive string for an error code listed in errno.lib. The
sample program Samples\ErrorHandling\error message test.cillustratesthe
use of error message (). The error message strings are defined in errors.1lib.

PARAMETER

message_ index Positive or negative value of error return code.

RETURN VALUE

Physical address of string, or zero if error code is not listed.

LIBRARY
ERRORS.LIB

Dynamic C Functions rabbit.com

101

http://www.rabbit.com

exception

int exception(int errCode);

DESCRIPTION

This function is called by Rabbit libraries when a runtime error occurs. It puts information
relevant to the runtime error on the stack and calls the default runtime error handler pointed to

by the ERROR_EXIT macro. To define your own error handler, see the

defineErrorHandler () function.

When the error handler is called, the following information will be on the stack:

Location on Stack Description
SP+0 Return address for error handler call
SP+2 Runtime error code
SP+4 (can be used for additional information)
SP+6 XPC when exception () was called (upper byte)
SP+8 Address where exception () was called from

RETURN VALUE

Runtime error code passed to it.

LIBRARY
ERRORS.LIB

SEE ALSO

defineErrorHandler

102

rabbit.com

Dynamic C Functions

http://www.rabbit.com

exit

void exit(int exitcode);

DESCRIPTION

Stops the program and returns exitcode to Dynamic C. Dynamic C uses values above 128
for run-time errors. When not debugging, exit will run an infinite loop, causing a watchdog
timeout if the watchdog is enabled.

PARAMETERS

exitcode Error code passed by Dynamic C.

LIBRARY
SYS.LIB

exp

float exp(float x);

DESCRIPTION

Computes the exponential of real £1oat value x.
PARAMETERS

x Value to compute
RETURN VALUE

Returns the value of e*.

If x > 89.8 (approx.), the function returns INF and signals a range error. If x <—89.8 (approx.),
the function returns 0 and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO
log, logl0, frexp, ldexp, pow, powlO, sgrt

Dynamic C Functions rabbit.com 103

http://www.rabbit.com

fabs

float fabs(float x);
DESCRIPTION
Computes the float absolute value of float x.

PARAMETERS

x Value to compute.

RETURN VALUE

x,ifx >=0,

else -x.
LIBRARY

MATH.LIB
SEE ALSO

abs

104 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat AutoMount

int fat AutoMount(word flags);

DESCRIPTION

Initializes the drivers in the default drivers configuration list in fat config.1lib and enu-
merates the devices in the default devices configuration list, then mounts partitions on enumer-
ated devices according to the device's default configuration flags, unless overridden by the
specified run time configuration flags. Despite its lengthy description, this function makes ini-
tializing multiple devices using the FAT library as easy as possible. The first driver in the con-
figuration list becomes the primary driver in the system, if one is not already set up.

After this routine successfully returns, the application can start calling directory and file func-
tions for the devices' mounted partitions.

If devices and/or partitions are not already formatted, this function can optionally format them
according to the device's configuration or run time override flags.

This function may be called multiple times, but will not attempt to remount device partitions
that it has already mounted. Once a device partition has been mounted by this function, un-
mounts and remounts must be handled by the application.

Even though this function may be called multiple times, it is not meant to be used as a polling
or status function. For example, if you are using removable media such as an SD card, you
should call sdspi debounce () to determine when the card is fully inserted into the socket.

There are two arrays of data structures that are populated by calling fat AutoMount (). The
array named fat part mounted[] is an array of pointers to fat part structures. A
fat part structure holds information about a specific FAT partition. The other array,

_fat device table[], is composed of pointers to mbr dev structures. An mbr dev
structure holds information about a specific device. Partition and device structures are needed
in many FAT function calls to specify the device and partition to be used.

An example of using fat _part mounted [] was shown in the sample program

fat create.c. FAT applications will need to scan fat part mounted[] to locate val-
id FAT partitions. A valid FAT partition must be identified before any file and directory opera-
tions can be performed. These pointers to FAT partitions may be used directly by indexing into
the array or stored in a local pointer. The fat shell.c sample uses an index into the array,
whereas most other sample programs make a copy of the pointer.

An example of using fat device table[] isin the sample program fat shell.c.
This array is used in FAT operations of a lower level than fat part mounted[]. Specifi-
cally, when the device is being partitioned, formatted and/or enumerated. Calling

fat AutoMount () relieves most applications of the need to directly use

fat device tablel].

Dynamic C Functions rabbit.com 105

http://www.rabbit.com

fat AutoMount (cont’d)

PARAMETERS

flags Run-time device configuration flags to allow overriding the default device
configuration flags. If not overriding the default configuration flags, spec-
ify FDDF_USE_DEFAULT. To override the default flags, specify the
ORed combination of one or more of the following:
* FDDF_MOUNT PART 0: Mount specified partition
+ FDDF_MOUNT PART 1:
« FDDF_MOUNT PART 2:
+ FDDF_MOUNT PART 3:
* FDDF_MOUNT PART ALL: Mount all partitions
* FDDF MOUNT DEV_0: Apply to specified device
+ FDDF_MOUNT DEV_1:
+ FDDF_MOUNT DEV_2:
« FDDF_MOUNT DEV_3:
* FDDF_MOUNT DEV_ALL: Apply to all available devices
* FDDF_NO_RECOVERY: Use norecovery if fails first time
* FDDF_COND_DEV_FORMAT: Format device if unformatted
* FDDF_COND_PART FORMAT: Format partition if unformatted
* FDDF_UNCOND_DEV_FORMAT: Format device unconditionally
* FDDF_UNCOND_PART FORMAT: Format partition unconditionally

Note: The FDDF_MOUNT PART_* flags apply equally to all
FDDF_MOUNT_ DEV_* devices which are specified. If this is a prob-
lem, call this function multiple times with a single DEV flag bit each
time.

Note: Formatting the device creates a single FAT partition covering
the entire device. It is recommended that you always set the

* PART FORMAT flag bit if you set the corresponding

* DEV_FORMAT flag bit.

106 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat AutoMount (cont’d)

RETURN VALUE
0: success
-EBADPART: partition is not a valid FAT partition
-EIO: Device I/O error
-EINVAL: invalid prtTable
-EUNFORMAT: device is not formatted
- ENOPART: no partitions exist on the device
-EBUSY: For non-blocking mode only, the device is busy. Call this function again to complete

the close.

Any other negative value means that an I/O error occurred when updating the directory entry.
In this case, the file is forced to close, but its recorded length might not be valid.

LIBRARY
FAT.LIB

SEE ALSO
fat EnumDevice, fat EnumPartition, fat MountPartition

Dynamic C Functions rabbit.com 107

http://www.rabbit.com

fat Close

int fat Close(FATfile *file);

DESCRIPTION

Closes a currently open file. You should check the return code since an I/O needs to be per-
formed when closing a file to update the file's EOF offset (length), last access date, attributes
and last write date (if modified) in the directory entry. This is particularly critical when using
non-blocking mode.

PARAMETERS

file Pointer to the open file to close.

RETURN VALUE

0: success.
-EINVAL: invalid file handle.
-EBUSY: For non-blocking mode only, the device is busy. Call this function again to complete

the close.

Any other negative value means that an I/O error occurred when updating the directory entry.
In this case, the file is forced to close, but its recorded length might not be valid.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir

108 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat CreateDir

int fat CreateDir(fat part *part, char *dirname);

DESCRIPTION
Creates a directory if it does not already exist. The parent directory must already exist.
In non-blocking mode, only one file or directory can be created at any one time, since a single

static FATf11e is used for temporary storage. Each time you call this function, pass the same
dirname pointer (not just the same string contents).

PARAMETERS
part Handle for the partition being used.
dirname Pointer to the full path name of the directory to be created.

RETURN VALUE
0: success.
-EINVAL: invalid argument. Trying to create volume label.
- ENOENT: parent directory does not exist.
- EPERM: the directory already exists or is write-protected.
-EBUSY: the device is busy (only if non-blocking).
-EFSTATE: if non-blocking, but a previous sequence of calls to this function (or
fat CreateFile ())hasnot completed and you are trying to create a different file or direc-
tory. You must complete the sequence of calls for each file or directory i.e., keep calling until
something other than - EBUSY is returned.

Other negative values are possible from fat Open()/fat Close () calls.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat Open, fat CreateFile

Dynamic C Functions rabbit.com 109

http://www.rabbit.com

fat CreateFile

int fat CreateFile(fat part *part, char *filename, long alloc_size,
FATfile *file);

DESCRIPTION
Creates a file if it does not already exist. The parent directory must already exist.
In non-blocking mode, if £i1e is NULL, only one file or directory can be created at any one

time, since a single static FATf1i 1e is used for temporary storage. Each time you call this func-
tion, pass the same dirname pointer (not just the same string contents).

PARAMETERS

part Pointer to the partition being used.

filename Pointer to the full path name of the file to be created.

alloc _size Initial number of bytes to pre-allocate. Note that at least one cluster will be
allocated. If there is not enough space beyond the first cluster for the re-
quested allocation amount, the file will be allocated with whatever space is
available on the partition, but no error code will be returned. If not even the
first cluster is allocated, the -ENOSPC error code will return. This initial
allocation amount is rounded up to the next whole number of clusters.

file If not NULL, the created file is opened and accessible using this handle.

If NULL, the file is closed after it is created.

RETURN VALUE

0: success.

-EINVAL: part, filename, alloc_size, or £ile contain invalid values.

-ENOENT: the parent directory does not exist.

-ENOSPC: no allocatable sectors were found.

- EPERM: write-protected, trying to create a file on a read-only partition.

-EBUSY: the device is busy (non-blocking mode only).

-EFSTATE: if non-blocking, but a previous sequence of calls to this function (of
fat_CreateFile) has not completed but you are trying to create a different file or directory. You
must complete the sequence of calls for each file or directory i.e. keep calling until something
other than -EBUSY is returned. This code is only returned if you pass a NULL file pointer, or
if the file pointer is not NULL and the referenced file is already open.

Other negative values indicate 1/O error, etc.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat ReadDir, fat Write

110 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat CreateTime

int fat CreateTime(fat dirent *entry, struct tm *t);

DESCRIPTION

This function puts the creation date and time of the entry into the system time structure t. The
function does not fill in the tm wday field in the system time structure.

PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE
0: success.
-EINVAL.: invalid directory entry or time pointer

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat LastAccess, fat LastWrite

Dynamic C Functions rabbit.com

1

http://www.rabbit.com

fat Delete

int fat Delete(fat part *part, int type, char *name);

DESCRIPTION

Deletes the specified file or directory. The type must match or the deletion will not occur. This
routine inserts a deletion code into the directory entry and marks the sectors as available in the
FAT table, but does not actually destroy the data contained in the sectors. This allows an unde-

lete function to be implemented, but such a routine is not part of this library. A directory must
be empty to be deleted.

PARAMETERS
part Handle for the partition being used.
type Must be a FAT file (FAT FILE) or a FAT directory (FAT DIR), depend-
ing on what is to be deleted.
name Pointer to the full path name of the file/directory to be deleted.

RETURN VALUE

0: success.

-EIO: device I/O error.

-EINVAL: part, type, or name contain invalid values.

-EPATHSTR: name is not a valid path/name string.

- EPERM: the file is open, write-protected, hidden, or system.

-ENOTEMPTY: the directory is not empty.

-ENOENT: the file/directory does not exist.

-EBUSY: the device is busy. (Only if non-blocking.)

-EPSTATE: if the partition is busy; i.e., there is an allocation in progress. (Only if non-block-
ing.)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir, fat Split, fat Truncate, fat Close

112 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat EnumDevice

int fat EnumDevice(mbr drvr *driver, mbr dev *dev, int devnum,
char *sig, int norecovery):;

DESCRIPTION

This routine is called to learn about the devices present on the driver passed in. The device will
be added to the linked list of enumerated devices. Partition pointers will be set to NULL, indi-
cating they have not been enumerated yet. Partition entries must be enumerated separately.

The signature string is an identifier given to the write-back cache, and must remain consistent
between resets so that the device can be associated properly with any battery-backed cache en-
tries remaining in memory.

This function is called by fat AutoMount () and fat Init ().

PARAMETERS

driver Pointer to an initialized driver structure set up during the initialization of
the storage device driver.

dev Pointer to the device structure to be filled in.

devnum Physical device number of the device.

sig Pointer to a unique signature string. Note that this value must remain the
same between resets.

norecovery Boolean flag - set to True to ignore power-recovery data. True is any value

except zero.

RETURN VALUE

0: success.

-EIO: error trying to read the device or structure.

-EINVAL: devnum invalid or does not exist.

- ENOMEM: memory for page buffer/RJ is not available.

- EUNFORMAT: the device is accessible, but not formatted. You may use it provided it is format-
ted/partitioned by either this library or by another system.

-EBADPART: the partition table on the device is invalid.

-ENOPART: the device does not have any FAT partitions. This code is superseded by any other
error detected.

-EEXIST: the device has already been enumerated.

-EBUSY: the device is busy (nonblocking mode only).

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat Init, fat EnumPartition

Dynamic C Functions rabbit.com 113

http://www.rabbit.com

fat EnumPartition

int fat EnumPartition(mbr dev *dev, int pnum, fat part *part);

DESCRIPTION

This routine is called to enumerate a partition on the given device. The partition information
will be put into the FAT partition structure pointed to by part. The partition pointer will be
linked to the device structure, registered with the write-back cache, and will then be active. The
partition must be of a valid FAT type.

This function is called by fat AutoMount () and fat Init ().

PARAMETERS
dev Pointer to an MBR device structure.
pnum Partition number to link and enumerate.
part Pointer to an FAT partition structure to be filled in.

RETURN VALUE

0: success.

-EIO: error trying to read the device or structure.

-EINVAL: partition number is invalid.

-EUNFORMAT: the device is accessible, but not formatted.

-EBADPART: the partition is not a FAT partition.

-EEXIST: the partition has already been enumerated.
-EUNFLUSHABLE: there are no flushable sectors in the write-back cache.
-EBUSY: the device is busy (Only if non-blocking.).

LIBRARY
FAT.LIB

SEE ALSO

fat EnumDevice, fat FormatPartition, fat MountPartition

114 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat FileSize

int fat FileSize(FATfile *file, unsigned long *length);

DESCRIPTION

Puts the current size of the file in bytes into 1ength.

PARAMETERS
file Handle for an open file.
length Pointer to the variable where the file length (in bytes) is to be placed.

RETURN VALUE

0: success.
-EINVAL: file is invalid.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Seek

Dynamic C Functions rabbit.com

115

http://www.rabbit.com

fat FormatDevice

int fat FormatDevice(mbr dev *dev, int mode);

DESCRIPTION

Formats a device. The device will have a DOS master boot record (MBR) written to it. Existing
partitions are left alone if the device was previously formatted. The formatted device will be
registered with the write-back cache for use with the FAT library. The one partition mode will
instruct the routine to create a partition table, with one partition using the entire device. This
mode only works if the device is currently unformatted or has no partitions.

If needed (i.e., there is no MBR on the device), this function is called by fat AutoMount ()
if its flags parameter allows it.

PARAMETERS
dev Pointer to the data structure for the device to format.
mode Mode:
0 = normal (use the partition table in the device structure)
1 = one partition using the entire device (errors occur if there are already
partitions in the device structure)
3 = force one partition for the entire device (overwrites values already in
the device structure)
RETURN
0: success.

-EIO: error trying to read the device or structure.
-EINVAL: device structure is invalid or does not exist.
-ENOMEM: memory for page buffer/RJ is not available.
-EEXIST: the device is already formatted.

-EPERM: the device already has mounted partition(s).
-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat Init, fat EnumDevice, fat PartitionDevice,
fat FormatPartition

116 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat FormatPartition

int fat FormatPartition(mbr dev *dev, fat part *part, int pnum,
int type, char *label, int (*usr) ()):

DESCRIPTION

Formats partition number pnum according to partition type. The partition table information in
the device must be valid. This will always be the case if the device was enumerated. The parti-
tion type must be a valid FAT type. Also note that the partition is not mounted after the partition
is formatted. If -EBUSY is returned, the partition structure must not be disturbed until a subse-
quent call returns something other than - EBUSY.

Ifneeded (i.e., fat _MountPartition () returned error code -EBADPART), this function
is called by fat AutoMount ().

PARAMETERS

dev Pointer to a device structure containing partitions.

part Pointer to a FAT partition structure to be linked. Note that opstate must
be set to zero before first call to this function if the library is being used in
the non-
blocking mode.

pnum Partition number on the device (0-3).

type Partition type.

label Pointer to a partition label string.

usr Pointer to a user routine.

RETURN VALUE

0: success.

-EIO: error in reading the device or structure.

-EINVAL: the partition number is invalid.

-EPERM: write access is not allowed.

-EUNFORMAT: the device is accessible, but is not formatted.
-EBADPART: the partition is not a valid FAT partition.
-EACCES: the partition is currently mounted.

-EBUSY: the device is busy (Only if non-blocking.).

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat Init, fat FormatDevice, fat EnumDevice,
fat PartitionDevice, fat EnumPartition

Dynamic C Functions rabbit.com 117

http://www.rabbit.com

fat Free

int fat Free(fat part *part);

DESCRIPTION

This function returns the number of free clusters on the partition.

PARAMETERS

part Handle to the partition.

RETURN VALUE

Number of free clusters on success
0: partition handle is bad or partition is not mounted.

LIBRARY
FAT.LIB

SEE ALSO

fat EnumPartition, fat MountPartition

118 rabbit.com

Dynamic C Functions

http://www.rabbit.com

fat GetAttr

int fat_ GetAttr(FATfile *file);

DESCRIPTION

This function gets the given attributes to the file. Use the defined attribute flags to check the
value:

* FATATTR READ ONLY - The file can not be modified

* FATATTR HIDDEN - The file is not visible when doing normal operations.

* FATATTR SYSTEM - This is a system file and should be left alone.

* FATATTR VOLUME_ID - This is the name of a logical disk

* FATATTR DIRECTORY - This is a directory and not a file.

* FATATTR_ ARCHIVE - This tells you when the file was last modified.

* FATATTR LONG NAME - This is a FAT32 or long file name. It is not supported.

PARAMETERS

file Handle to the open file.

RETURN VALUE

Attributes on success
-EINVAL: invalid file handle.

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Status

Dynamic C Functions rabbit.com 119

http://www.rabbit.com

fat GetName

int fat GetName(fat dirent *entry, char *buf, word flags);

DESCRIPTION

Translates the file or directory name in the fat dirent structure into a printable name. FAT
file names are stored in a strict fixed-field format in the fat dirent structure (returned from
fat Status, for example). This format is not always suitable for printing, so this function
should be used to convert the name to a printable null-terminated string.

PARAMETERS
entry Pointer to a directory entry obtained by fat Status ().
buf Pointer to a char array that will be filled in. This array must be at least 13
characters long.
flags May be one of the following:
* 0 - standard format, e.g., AUTOEXEC.BAT or XYZ.GIF
* FAT LOWERCASE - standard format, but make lower case.
RETURN VALUE
0: success.

-EINVAL: invalid (NULL) parameter(s).

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status

120 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Init

int fat Init(int pnum, mbr drvr *driver, mbr dev *dev, fat part
*part, int norecovery):;

DESCRIPTION

Initializes the default driver in MBR_DRIVER_ INIT, enumerates device 0, then enumerates
and mounts the specified partition. This function was replaced with the more powerful
fat AutoMount ().

fat Init () will only work with device 0 of the default driver. This driver becomes the pri-
mary driver in the system.

The application can start calling any directory or file functions after this routine returns success-
fully.

The desired partition must already be formatted. If the partition mount fails, you may call the
function again using a different partition number (pnnum). The device will not be initialized a
second time.

PARAMETERS
pnum Partition number to mount (0-3).
driver Pointer to the driver structure to fill in.
dev Pointer to the device structure to fill in.
part Pointer to the partition structure to fill in.
norecovery Boolean flag - set to True to ignore power-recovery data. True is any value

except zero.

RETURN VALUE
0: success.
-EIO: device I/O error.
-EINVAL: pnum, driver, or device, or part is invalid.
-EUNFORMAT: the device is not formatted.
-EBADPART: the partition requested is not a valid FAT partition.
-ENOPART: no partitions exist on the device.
-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat AutoMount, fat EnumDevice, fat EnumPartition,
fat MountPartition

Dynamic C Functions rabbit.com 121

http://www.rabbit.com

fat InitUCOSMutex

void fat InitUCOSMutex(int mutexPriority);

DESCRIPTION

This function was introduced in FAT version 2.10. Prior versions of the FATfile system are com-
patible with pC/OS-II only if FAT API calls are confined to one pC/OS-II task. The FAT APl is
not reentrant from multiple tasks without the changes made in FAT version 2.10. If you wish to
use the FAT file system from multiple pC/COS tasks, you must do the following:

1. The statement #define FAT USE_UCOS_MUTEX must come before the statement:

#use FAT.LIB

2. After calling OSInit () and before starting any tasks that use the FAT, call
fat InitUCOSMutex (mutexPriority). The parameter mutexPriorityisa
uC/OS-II task priority that must be higher than the priorities of all tasks that call FAT API func-
tions.

3. You must not call low-level, non-API FAT or write-back cache functions. Only call FAT func-
tions appended with “fat_" and with public function descriptions.

4. Run the FAT in blocking mode (#define FAT BLOCK).

Mutex timeouts or other errors will cause a run-time error -ERR_FAT MUTEX ERROR.
nC/OS-II may raise the priority of tasks using mutexes to prevent priority inversion.

The default mutex time-out in seconds is given by FAT MUTEX TIMEOUT SEC, which de-
faults to 5 seconds if not defined in the application before the statement #use FAT.LIB.

PARAMETERS

mutexPriority A pnC/OS-IItask priority that MUST be higher than the priorities of all
tasks that call FAT API functions.

RETURN VALUE
None: success.
-ERR_FAT MUTEX_ ERROR: A run-time error causes an exception and the application will
exit with this error code.
LIBRARY
FAT.LIB

SEE ALSO
fat AutoMount, fat Init

122 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat LastAccess

int fat LastAccess(fat dirent *entry, struct tm *t);

DESCRIPTION

Puts the last access date of the specified entry into the system time structure t. The time is al-
ways set to midnight. The function does not fill in the tm_wday field in the system time struc-

ture.
PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE
0: success.

-EINVAL: invalid directory entry or time pointer

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat CreateTime, fat LastWrite

Dynamic C Functions rabbit.com

123

http://www.rabbit.com

fat LastWrite

int fat LastWrite(fat dirent *entry, struct tm *t);

DESCRIPTION

Puts the date and time of the last write for the given entry into the system time structure t. The
function does not fill in the tm wday field in the system time structure.

PARAMETERS
entry Pointer to a directory entry
t Pointer to a system time structure

RETURN VALUE

0: success.
-EINVAL: invalid directory entry or time pointer

LIBRARY
FAT.LIB

SEE ALSO

fat ReadDir, fat Status, fat CreateTime, fat LastAccess

124 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat MountPartition

int fat MountPartition(fat part *part);

DESCRIPTION

Marks the enumerated partition as mounted on both the FAT and MBR level. The partition
MUST be previously enumerated with fat EnumPartition().

This function is called by fat AutoMount () and fat Init ().
PARAMETER

part Pointer to the FAT partition structure to mount.

RETURN VALUE

0: success.

-EINVAL: device or partition structure or part is invalid.

-EBADPART: the partition is not a FAT partition.

- ENOPART: the partition does not exist on the device.

-EPERM: the partition has not been enumerated.

-EACCESS: the partition is already linked to another fat part structure.
-EBUSY: the device is busy. (Only if non-blocking.)

LIBRARY
FAT.LIB

SEE ALSO

fat EnumPartition, fat UnmountPartition

Dynamic C Functions rabbit.com 125

http://www.rabbit.com

fat Open

int fat Open(fat part *part, char *name, int type, int £ff,

FATfile *file,

DESCRIPTION

long *prealloc);

Opens a file or directory, optionally creating it if it does not already exist. If the function returns
-EBUSY, call it repeatedly with the same arguments until it returns something other than

-EBUSY.

PARAMETERS
part

name

type
ff

file

prealloc

Handle for the partition being used.
Pointer to the full path name of the file to be opened/created.
FAT FILE or FAT DIR, depending on what is to be opened/created.

File flags, must be one of:

* FAT OPEN - Object must already exist. If it does not exist, -ENOENT
will be returned.

* FAT CREATE - Object is created only if it does not already exist
* FAT MUST CREATE - Object is created, and it must not already exist.

* FAT READONLY - No write operations (this flag is mutually exclusive
with any of the CREATE flags).

* FAT SEQUENTIAL - Optimize for sequential reads and/or writes. This
setting can be changed while the file is open by using the
fat fcntl () function.

Pointer to an empty FAT file structure that will act as a handle for the newly
opened file. Note that you must memset this structure to zero when you
are using the non-blocking mode before calling this function the first time.
Keep calling until something other than - EBUSY is returned, but do not
change anything in any of the parameters while doing so.

An initial byte count if the object needs to be created. This number is
rounded up to the nearest whole number of clusters greater than or equal to
1. This parameter is only used if one of the * CREATE flag is set and the
object does not already exist. On return, *prealloc is updated to the ac-
tual number of bytes allocated. May be NULL, in which case one cluster is
allocated if the call is successful.

126

rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Open (cont’d)

RETURN VALUE

0: success.

-EINVAL: invalid arguments. Trying to create volume label, or conflicting flags.

-ENOENT: file/directory could not be found.

-EEXIST: object existed when FAT MUST CREATE flag set.

-EPERM: trying to create a file/directory on a read-only partition.

-EMFILE - too many open files. If you get this code, increase the FAT MAXMARKERS defi-

nition in the BIOS.
Other negative values indicate I/O error, etc.
Non-blocking mode only:

-EBUSY: the device is busy (nonblocking mode only).

-EFSTATE - file structure is not in a valid state. Usually means it was not zerod before calling
this function for the first time (for that file) struct, when in non-blocking mode; can also occur
if the same file struct is opened more than once.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir, fat Status, fat Close

Dynamic C Functions rabbit.com 127

http://www.rabbit.com

fat OpenDir

int fat OpenDir(fat part *part, char *dirname, FATfile *dir);

DESCRIPTION

Opens a directory for use, filling in the FATfi1e handle.

PARAMETERS
part Pointer to the partition structure being used.
dirname Pointer to the full path name of the directory to be opened or created.
dir Pointer to directory requested.

RETURN VALUE

0: success

-EINVAL: invalid argument.

-ENOENT: the directory cannot be found.

-EBUSY: the device is busy (Only if non-blocking).

Other negative values are possible from the fat Open () call.

LIBRARY
FAT.LIB

SEE ALSO

fat ReadDir, fat Status, fat Open, fat Close

128 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat PartitionDevice

int fat PartitionDevice(mbr dev *dev, int pnum);

DESCRIPTION

This function partitions the device by modifying the master boot record (MBR), which could
destroy access to information already on the device. The partition information contained in the
specified mbr dev structure must be meaningful, and the sizes and start positions must make
sense (no overlapping, etc.). If this is not true, you will get an -EINVAL error code. The device
being partitioned must already have been formatted and enumerated.

This function will only allow changes to one partition at a time, and this partition must either
not exist or be of a FAT type.

The validity of the new partition will be verified before any changes are done to the device. All
other partition information in the device structure (for those partitions that are not being modi-
fied) must match the values currently existing on the MBR. The type given for the new partition
must either be zero (if you are deleting the partition) or a FAT type.

You may not use this function to create or modify a non-FAT partition.

PARAMETERS
dev Pointer to the device structure of the device to be partitioned.
pnum Partition number of the partition being modified.

RETURN VALUE

0: success.

-EIO: device I/O error.

-EINVAL: pnum or device structure is invalid.
-EUNFORMAT: the device is not formatted.
-EBADPART: the partition is a non-FAT partition.
-EPERM: the partition is mounted.

-EBUSY: the device is busy (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO

fat FormatDevice, fat EnumDevice, fat FormatPartition

Dynamic C Functions rabbit.com 129

http://www.rabbit.com

fat Read

int fat Read(FATfile *file, char *buf, int len);

DESCRIPTION

Given £ile, buf, and 1en, this routine reads 1en characters from the specified file and plac-
es the characters into buf. The function returns the number of characters actually read on suc-
cess. Characters are read beginning at the current position of the file and the position pointer
will be left pointing to the next byte to be read. The file position can be changed by the

fat Seek () function. Ifthe file contains fewer than 1en characters from the current position
to the EOF, the transfer will stop at the EOF. If already at the EOF, 0 is returned. The len pa-
rameter must be positive, limiting reads to 32767 bytes per call.

PARAMETERS
file Handle for the file being read.
buf Pointer to the buffer where data are to be placed.
len Length of data to be read.

RETURN VALUE
Number of bytes read: success. May be less than the requested amount in non-blocking mode,
or if EOF was encountered.
-EEOF: stating position for read was at (or beyond) end-of-file.
-EIO: device I/O error.
-EINVAL: file, buf, or 1len, contain invalid values.
-EPERM: the file is locked.
- ENOENT: the file/directory does not exist.
-EFSTATE: file is in inappropriate state (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Write, fat Seek

130 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat ReadDir

int fat ReadDir(FATfile *dir, fat dirent *entry, int mode);

DESCRIPTION

Reads the next entry of the desired type from the given directory, filling in the entry structure.

PARAMETERS
dir
entry

mode

Pointer to the handle for the directory being read.

Pointer to the handle to the entry structure to fill in.

0 = next active file or directory entry including read only (no hidden, sys,
label, deleted or empty)

A nonzero value sets the selection based on the following attributes:

L]

FATATTR READ ONLY - include read-only entries
FATATTR HIDDEN - include hidden entries
FATATTR SYSTEM - include system entries
FATATTR VOLUME_ID - include label entries
FATATTR DIRECTORY - include directory entries
FATATTR ARCHIVE - include modified entries
FAT FIL RD_ONLY - filter on read-only attribute
FAT FIL HIDDEN - filter on hidden attribute
FAT FIL SYSTEM - filter on system attribute
FAT FIL LABEL - filter on label attribute

FAT FIL DIR - filter on directory attribute

FAT FIL ARCHIVE - filter on modified attribute

The FAT INC_* flags default to FAT INC ACTIVE if none set:

L]

L]

FAT INC DELETED - include deleted entries
FAT INC EMPTY - include empty entries
FAT INC LNAME - include long name entries
FAT INC ACTIVE - include active entries

The following predefined filters are available:

L]

L]

FAT INC ALL - returns ALL entries of ANY type

FAT INC DEF - default (files and directories including read-only and
archive)

Note: Active files are included by default unless FAT INC DELETED,
FAT INC_ EMPTY, or FAT INC_ LNAME is set. Include flags become the desired fil-
ter value if the associated filter flags are set.

Dynamic C Functions

rabbit.com

131

http://www.rabbit.com

fat ReadDir (cont’d)

EXAMPLES OF FILTER BEHAVIOR
mode = FAT INC _DEF | FATFIL HIDDEN | FATATTR HIDDEN
would return the next hidden file or directory (including read-only and archive)
mode = FAT INC DEF|FAT FIL HIDDEN|FAT FIL DIR|FATATTR HIDDEN
would return next hidden directory (but would not return any hidden file)

mode = FAT INC DEF|FAT FIL HIDDEN|FAT FIL DIR|
FATATTR HIDDEN & ~FATATTR DIRECTORY

would return next hidden file (but would not return any hidden directory)
mode = FAT INC ALL & ~FAT INC EMPTY
would return the next non-empty entry of any type

RETURN VALUE

0: success.

-EINVAL: invalid argument.

-ENOENT: directory does not exist

-EEOF: no more entries in the directory

-EFAULT: directory chain has link error

-EBUSY: the device is busy (non-blocking mode only)

Other negative values from the fat Open () call are also possible.

LIBRARY

FAT.LIB

SEE ALSO

fat OpenDir, fat Status

132 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Seek

int fat Seek(FATfile *file, long pos, int whence);

DESCRIPTION

Positions the internal file position pointer. fat Seek () will allocate clusters to the file if nec-
essary, but will not move the position pointer beyond the original end of file (EOF) unless doing
a SEEK RAW. In all other cases, extending the pointer past the original EOF will preallocate the
space that would be needed to position the pointer as requested, but the pointer will be left at
the original EOF and the file length will not be changed. If this occurs, an EOF error will be
returned to indicate the space was allocated but the pointer was left at the EOF.

PARAMETERS
file

pos

whence

Pointer to the file structure of the open file.

Position value in number of bytes (may be negative). This value is inter-
preted according to the third parameter, whence.

Must be one of the following:

SEEK_SET - pos is the byte position to seek, where 0 is the first byte
of the file. If pos is less than 0, the position pointer is set to 0 and no
error code is returned. If pos is greater than the length of the file, the po-
sition pointer is set to EOF and error code -EEOF is returned.

SEEK _CUR - seek pos bytes from the current position. If pos is less
than 0 the seek is towards the start of the file. If this goes past the start
of the file, the position pointer is set to 0 and no error code is returned.
If pos is greater than 0 the seek is towards EOF. If this goes past EOF

the position pointer is set to EOF and error code -EEOF is returned.

SEEK_END - seek to pos bytes from the end of the file. That is, for a
file that is x bytes long, the statement:

fat Seek (&my file, -1, SEEK END) ;

will cause the position pointer to be set at x-1 no matter its value prior
to the seek call. If the value of pos would move the position pointer past
the start of the file, the position pointer is set to 0 (the start of the file)
and no error code is returned. If pos is greater than or equal to 0, the
position pointer is set to EOF and error code -EEOF is returned..

SEEK_RAW - is similar to SEEK _SET, but if pos goes beyond EOF,
using SEEK_RAW will set the file length and the position pointer to
pos.

Dynamic C Functions

rabbit.com

133

http://www.rabbit.com

fat Seek (cont’d)

RETURN VALUE
0: success.
-EIO: device I/O error.
-EINVAL: file, pos, or whence contain invalid values.
-EPERM: the file is locked or writes are not permitted.
-ENOENT: the file does not exist.
-EEOF: space is allocated, but the pointer is left at original EOF.
-ENOSPC: no space is left on the device to complete the seek.
-EBUSY: the device is busy (Only if non-blocking).
-EFSTATE: if file in inappropriate state (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Read, fat Write, fat xWrite

134 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat SetAttr

int fat SetAttr(FATfile *file, int attr);

DESCRIPTION

This function sets the given attributes to the file. Use defined attribute flags to create the set val-
ues.

PARAMETERS
file Handle to the open file.
attr Attributes to set in file. For attribute description see fat GetAttr ().

May be one or more of the following:
e FATATTR READ ONLY

* FATATTR HIDDEN

e FATATTR SYSTEM

e FATATTR VOLUME ID

e FATATTR DIRECTORY

¢ FATATTR ARCHIVE

¢ FATATTR LONG NAME

RETURN VALUE

0: Success

-EIO: on device IO error

-EINVAL: invalid open file handle

-EPERM: if the file is locked or write not permitted
-EBUSY: if the device is busy. (Only if non-blocking)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Status

Dynamic C Functions rabbit.com 135

http://www.rabbit.com

fat Split

int fat Split(FATfile *file, long where, char *newfile);

DESCRIPTION

Splits the original file at where and assigns any left over allocated clusters to newfile. As
the name implies, newfile is a newly created file that must not already exist. Upon comple-
tion, the original file is closed and the file handle is returned pointing to the created and opened
new file. The file handle given must point to a file of type FAT FILE. There are internal static
variables used in this function, so only one file split operation can be active. Additional requests
will be held off with - EBUSY returns until the active split completes.

PARAMETERS

file Pointer to the open file to split.

where May be one of the following:
* >0 - absolute byte to split the file. If the absolute byte is beyond the

EOF, file is split at EOF.

« FAT BRK_END - split at EOF.
* FAT BRK_POS - split at current file position.

newfile Pointer to the absolute path and name of the new file created for the split.

RETURN VALUE

0: success.

-EIO: device I/O error.

-EINVAL: £ile has invalid references.

-EPATHSTR: newfile is not a valid path/name string.

-EEOF: no unused clusters are available for newfile. £ile will be unchanged and open,
newfile is not created.

-EPERM: file is in use, write-protected, hidden, or system.
-ENOENT: f£ile does not exist.

-ETYPE: file is not a FAT file type.

-EBUSY: the device is busy (Only non-blocking mode).
-EFSTATE: if file in inappropriate state (Only non-blocking mode).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir, fat Delete, fat Truncate, fat Close

136 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Status

int fat_ Status(fat part *part, char *name, fat dirent *entry);

DESCRIPTION
Scans for the specified entry and fills in the entry structure if found without opening the direc-
tory or entry.
PARAMETERS
part Pointer to the partition structure being used.
name Pointer to the full path name of the entry to be found.
entry Pointer to the directory entry structure to fill in.

RETURN VALUE

0: success.

-EI0: device I/O error.

-EINVAL: part, filepath, or entry are invalid.
- ENOENT: the file/directory/label does not exist.

-EBUSY: the device is busy (Only non-blocking mode). If you get this error, call the function
again without changing any parameters.

LIBRARY
FAT.LIB

SEE ALSO
fat ReadDir

Dynamic C Functions rabbit.com

137

http://www.rabbit.com

fat SyncFile

int fat_SyncFile(FATfile *file);

DESCRIPTION
Updates the directory entry for the given file, committing cached size, dates, and attribute fields

to the actual directory. This function has the same effect as closing and re-opening the file.

PARAMETERS

file Pointer to the open file.

RETURN VALUE

0: success.

-EINVAL: file is invalid.

-EPERM - this operation is not permitted on the root directory.

-EBUSY: the device is busy (Only if non-blocking). Call function again to complete the update.
-EFSTATE - file not open or in an invalid state.

Any other negative value: I/O error when updating the directory entry.

LIBRARY
FAT.LIB

SEE ALSO
fat Close, fat Open, fat OpenDir

138 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat SyncPartition

int fat SyncPartition(fat part *part);

DESCRIPTION

Flushes all cached writes to the specified partition to the actual device.
PARAMETER
part Pointer to the partition to be synchronized.

RETURN VALUE

0: success.
-EINVAL: part is invalid.
-EBUSY: the device is busy (Only if non-blocking). Call function again to complete the sync.

Any other negative value: 1/O error when updating the device.

LIBRARY
FAT.LIB

SEE ALSO

fat Close, fat SyncFile, fat UnmountPartition

Dynamic C Functions rabbit.com 139

http://www.rabbit.com

fat Tell

int fat Tell(FATfile *file, unsigned long *pos);

DESCRIPTION

Puts the value of the position pointer (that is, the number of bytes from the beginning
of the file) into pos. Zero indicates the position pointer is at the beginning of the file.

pC/OS-I1 USERS:

e The FAT API is not reentrant. To use the FAT from multiple nC/OS-II tasks, put the
following statement in your application:

#define FAT USE_UCOS_MUTEX

® Mutex timeouts or other mutex errors will cause the run-time error
ERR_FAT MUTEX ERROR. The default mutex timeout is 5 seconds and can be
changed by #define'ing a different value for FAT MUTEX TIMEOUT SEC.

® You MUST call fat InitUCOSMutex () after calling 0OSInit () and before calling
any other FAT API functions.

¢ You must run the FAT in blocking mode (#define FAT BLOCK).

® You must not call low-level, non-API FAT or write-back cache functions. Only call FAT
functions appended with “fat_* and with public function descriptions.

PARAMETERS
file Pointer to the file structure of the open file
pos Pointer to the variable where the value of the file position pointer is to be

placed.

RETURN VALUE

0: success.
-EIO: position is beyond EOF.
-EINVAL: file is invalid.

LIBRARY
FAT.LIB

SEE ALSO
fat Seek, fat Read, fat Write, fat xWrite

140 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat tick

int fat tick(void);

DESCRIPTION

Drive device I/0 completion and periodic flushing. It is not generally necessary for the appli-
cation to call this function; however, if it is called regularly (when the application has nothing
else to do) then file system performance may be improved.

RETURN VALUE
Currently always 0.

LIBRARY
FATWTC.LIB

Dynamic C Functions rabbit.com 141

http://www.rabbit.com

fat Truncate

int fat Truncate(FATfile *file, long where);

DESCRIPTION

Truncates the file at where and frees any left over allocated clusters. The file must be a
FAT FILE type.

PARAMETERS
file Pointer to the open file to truncate.
where One of the following:

* >() - absolute byte to truncate the file. The file is truncated at EOF if
the absolute byte is beyond EOF.

* FAT BRK_END - truncate at EOF.
* FAT BRK_POS - truncate at current file position.

RETURN VALUE
0: success.
-EIO0: device I/O error.
-EINVAL: file is invalid.
-EPERM: file is in use, write-protected, hidden, or system.
- ENOENT: the file does not exist.
-ETYPE: file is not a FAT file type.
-EBUSY: the device is busy (Only if non-blocking).
-EFSTATE: if file in inappropriate state (Only if non-blocking)

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat OpenDir, fat Delete, fat Split

142 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat UnmountDevice

int fat_ UnmountDevice(mbr_dev * dev);

DESCRIPTION

Unmounts all FAT partitions on the given device and unregisters the device from the cache sys-
tem. This commits all cache entries to the device and prepares the device for power down or
removal. The device structure given must have been enumerated with fat EnumDevice ().

This function was introduced in FAT module version 2.06. Applications using prior versions of
the FAT module would call fat UnmountPartition () instead.

PARAMETER

dev Pointer to a FAT device structure to unmount.

RETURN VALUE

0: success.
-EINVAL: device structure (dev) is invalid.
-EBUSY: the device is busy (Only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO

fat EnumDevice, fat AutoMount, fat UnmountPartition

Dynamic C Functions rabbit.com 143

http://www.rabbit.com

fat UnmountPartition

int fat UnmountPartition(fat part *part);

DESCRIPTION

Marks the enumerated partition as unmounted on both the FAT and the master boot record lev-
els. The partition must have been already enumerated using fat EnumPartition ()
(which happens when you call fat AutoMount ()).

To unmount all FAT partitions on a device call fat UnmountDevice (), a function intro-
duced with FAT version 2.06. It not only commits all cache entries to the device, but also pre-
pares the device for power down or removal.

Note: The partitions on a removable device must be unmounted in order to flush data
before removal. Failure to unmount a partition that has been written could cause dam-
age to the FAT file system.

PARAMETERS
part Pointer to a FAT partition structure to unmount.

RETURN VALUE

0: success.

-EINVAL: device or partition structure or pnum is invalid.
-EBADPART: the partition is not a FAT partition.

- ENOPART: the partition does not exist on the device.
-EPERM: the partition has not been enumerated.

-EBUSY: the device is busy (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO

fat EnumPartition, fat MountPartition, fat UnmountDevice

144 rabbit.com Dynamic C Functions

http://www.rabbit.com

fat Write

int fat Write(FATfile *file, char *buf, int len);

DESCRIPTION

Writes characters into the file specified by the file pointer beginning at the current position in
the file. Characters will be copied from the string pointed to by buf. The 1en variable controls
how many characters will be written. This can be more than one sector in length, and the write
function will allocate additional sectors if needed. Data is written into the file starting at the cur-
rent file position regardless of existing data. Overwriting at specific points in the file can be ac-
complished by calling the fat Seek () function before calling fat Write ().

PARAMETERS
file Handle for the open file being written.
buf Pointer to the buffer containing data to write.
len Length of data to be written.

RETURN VALUE

Number of bytes written: success (may be less than 1en, or zero if non-blocking mode)
-EIO: device I/O error.

-EINVAL: file, buf, or 1len contain invalid values.

-ENOENT: file does not exist.

-ENOSPC: no space left on the device to complete the write.

-EFAULT: problem in file (broken cluster chain, etc.).

-EPERM: the file is locked or is write-protected.

-EBUSY: the device is busy (only if non-blocking).

-EFSTATE: file is in inappropriate state (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Read, fat xWrite, fat Seek

Dynamic C Functions rabbit.com 145

http://www.rabbit.com

fat xWrite

int fat xWrite(FATfile *file, long xbuf, int len);

DESCRIPTION

Writes characters into the file specified by the file pointer beginning at the current position in the
file. Characters will be copied from the xmem string pointed to by xbuf. The 1en variable con-
trols how many characters will be written. This can be more than one sector in length, and the
write function will allocate additional sectors if needed. Data will be written into the file starting
at the current file position regardless of existing data. Overwriting at specific points in the file
can be accomplished by calling the fat Seek () function before calling fat xWrite ().

PARAMETERS
file Handle for the open file being written.
xbuf xmem address of the buffer to be written.
len Length of data to write.

RETURN VALUE
Number of bytes written: success. (may be less than 1en, or zero if non-blocking mode)
-EIO: device I/O error.
-EINVAL: file, xbuf, or 1en contain invalid values.
-ENOENT: the file/directory does not exist.
-ENOSPC: there are no more sectors to allocate on the device.
-EFAULT: there is a problem in the file (broken cluster chain, etc.).
-EPERM: the file is locked or write-protected.
-EBUSY: the device is busy (only if non-blocking).
-EFSTATE: file is in inappropriate state (only if non-blocking).

LIBRARY
FAT.LIB

SEE ALSO
fat Open, fat Read, fat Write, fat Seek

146 rabbit.com Dynamic C Functions

http://www.rabbit.com

fclose

void fclose(File* f);
DESCRIPTION
Closes a file.
PARAMETERS
£ The pointer to the file to close.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com 147

http://www.rabbit.com

fcreate (FS1l)

int fcreate(File* f, FileNumber fnum);

DESCRIPTION
Creates a file. Before calling this function, a variable of type File must be defined in the ap-

plication program.

File file;
fcreate (&file, 1);

PARAMETERS
£ The pointer to the created file.
fnum This is a user-defined number in the range of 1 to127 inclusive. Each file

in the flash file system is assigned a unique number in this range.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

148 rabbit.com Dynamic C Functions

http://www.rabbit.com

fcreate (FS2)

int fcreate(File* f, FileNumber name) ;

DESCRIPTION

Create a new file with the given “file name” which is composed of two parts: the low byte is the
actual file number (1 to 255 inclusive), and the high byte contains an extent number (1 to
__fs.num_1x) on which to place the file metadata. The extent specified by £s_set 1x()
is always used to determine the actual data extent. If the high byte contains 0, then the default
metadata extent specified by £s_set 1x () isused. The file descriptor is filled in if success-
ful. The file will be opened for writing, so a further call to fopen wr () is not necessary.

The number of files which may be created is limited by the lower of FS_ MAX FILES and 255.
This limit applies to the entire filesystem (all logical extents). Once a file is created, its data and
metadata extent numbers are fixed for the life of the file, i.e., until the file is deleted.

When created, no space is allocated in the file system until the first write occurs for the file.
Thus, if the system power is cycled after creation but before the first byte is written, the file will
be effectively deleted. The first write to a file causes one sector to be allocated for the metadata.

Before calling this function, a variable of type File must be defined in the application pro-
gram. (The sizeof () function will return the number of bytes used for the File data struc-
ture.)

File file;
fcreate (&file, 1);

PARAMETERS
£ Pointer to the file descriptor to fill in.
name File number including optional metadata extent number.

RETURN VALUE

0: Success.
1 0: Failure.

ERRNO VALUES

EINVAL - Zero file number requested, or invalid extent number.

EEXIST - File with given number already exists.

ENFILE - No space is available in the existing file table. If this error occurs, increase the def-
inition of FS_MAX FILES, a #define constant that should be declared before #use
"fs2.1ib".

LIBRARY
fs2.LIB

SEE ALSO
fcreate unused (FS2), fs_set 1x (FS2), fdelete (FS2)

Dynamic C Functions rabbit.com 149

http://www.rabbit.com

fcreate unused (FSl)

FileNumber fcreate unused(File * £);

DESCRIPTION
Searches for the first unused file number in the range 1 through 127, and creates a file with that
number.

PARAMETERS
£ The pointer to the created file.

RETURN VALUE
The FileNumber (1-127) of the new file if success.

LIBRARY
FILESYSTEM.LIB

SEE ALSO
fcreate (FS1)

150 rabbit.com Dynamic C Functions

http://www.rabbit.com

fcreate unused (FS2)

FileNumber fcreate unused(File * £);

DESCRIPTION

Create a new file and return the “file name” which is a number between 1 and 255. The new file
will be created on the current default extent(s) as specified by £s_set 1x (). Other behavior
is the same as fcreate ().

PARAMETERS

£ Pointer to file descriptor to fill in.

RETURN VALUE

>0: Success, the FileNumber (1-255) of the new file.
0: Failure.

ERRNO VALUE
ENFILE - No unused file number available.

LIBRARY
fs2.LIB

SEE ALSO
fcreate (FS2), fs _set 1x (FS2), fdelete (FS2)

Dynamic C Functions rabbit.com

151

http://www.rabbit.com

fdelete (FS1)

int fdelete(FileNumber fnum);

DESCRIPTION
Deletes a file.

PARAMETERS

fnum A number in the range 1 to 127 inclusive that identifies the file in the flash
file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

152 rabbit.com Dynamic C Functions

http://www.rabbit.com

fdelete (FS2)

int fdelete(FileNumber name) ;

DESCRIPTION

Delete the file with the given number. The specified file must not be open. The file number (i.e.
name) is composed of two parts: the low byte contains the actual file number, and the high byte
(if not zero) contains the metadata extent number of the file.

PARAMETERS

name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
1 0: Failure.

LIBRARY
fs2.LIB

ERRNO VALUES

ENOENT - File doesn’t exist, or metadata extent number doesn’t match an existing file.
EBUSY - File is open.
EIO - I/O error when releasing blocks occupied by this file.

SEE ALSO
fcreate (FS2)

Dynamic C Functions rabbit.com

153

http://www.rabbit.com

fflush (FS2)

int fflush(File * f);

DESCRIPTION

Flush any buffers, associated with the given file, retained in RAM to the underlying hardware
device. This ensures that the file is completely written to the filesystem. The file system does
not currently perform any buffering, however future revisions of this library may introduce
buffering to improve performance.

PARAMETERS

£ Pointer to open file descriptor.

RETURN VALUE

0: Success.
1 0: Failure.

ERRNO VALUES

EBADFD - file invalid or not open.
EIO -1/O error.

LIBRARY
fs2.1.IB

SEE ALSO
fs_sync (FS2)

154 rabbit.com Dynamic C Functions

http://www.rabbit.com

ffteplx

void fftcplx(int * x, int N, int * blockexp);

DESCRIPTION

Computes the complex DFT of the N-point complex sequence contained in the array x and re-
turns the complex result in x. N must be a power of 2 and lie between 4 and 1024. An invalid
N causes a RANGE exception. The N-point complex sequence in array x is replaced with its
N-point complex spectrum. The value of blockexp is increased by 1 each time array x has
to be scaled, to avoid arithmetic overflow.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftecplxinv, fftreal, fftrealinv, hanncplx, hannreal, powerspectrum

Dynamic C Functions rabbit.com

155

http://www.rabbit.com

fftcplxinv

void fftcplxinv(int * x, int N, int * blockexp);

DESCRIPTION

Computes the inverse complex DFT of the N-point complex spectrum contained in the array x
and returns the complex result in x. N must be a power of 2 and lie between 4 and 1024. An
invalid N causes a RANGE exception. The value of blockexp is increased by 1 each time
array x has to be scaled, to avoid arithmetic overflow. The value of blockexp is also de-
creased by logyN to include the 1/N factor in the definition of the inverse DFT

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

fftcplx, fftreal, fftrealinv, hanncplx, hannreal, powerspectrum

156 rabbit.com Dynamic C Functions

http://www.rabbit.com

fftreal

void fftreal(int * x, int N, int * blockexp);

DESCRIPTION

Computes the N-point, positive-frequency complex spectrum of the 2N-point real sequence in
array x. The 2N-point real sequence in array x is replaced with its N-point positive-frequency
complex spectrum. The value of blockexp is increased by 1 each time array x has to be
scaled, to avoid arithmetic overflow.

The imaginary part of the X][0] term (stored in x[1]) is set to the real part of the fimax term.

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence is
stored in x [0], the first element in x [1], and the kth element in x[£].

N must be a power of 2 and lie between 4 and 1024. An invalid N causes a RANGE exception.

PARAMETERS
x Pointer to 2N-point sequence of real fractions.
N Number of complex elements in output spectrum

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftrealinv, hanncplx, hannreal, powerspectrum

Dynamic C Functions rabbit.com

157

http://www.rabbit.com

fftrealinv

void fftrealinv(int * x, int N, int * blockexp);

DESCRIPTION

Computes the 2N-point real sequence corresponding to the N-point, positive-frequency complex
spectrum in array x. The N-point, positive-frequency spectrum contained in array x is replaced
with its corresponding 2N-point real sequence. The value of blockexp is increased by 1 each
time array x has to be scaled, to avoid arithmetic overflow. The value of blockexp is also
decreased by logyN to include the 1/N factor in the definition of the inverse DFT.

The function expects to find the real part of the finax term in the imaginary part of the zero-fre-
quency X [0] term (stored x[1]).

The 2N-point real sequence is stored in natural order. The zeroth element of the sequence is
stored in x [0], the first element in x [1], and the kth element in x [k] .

N must be a power of 2 and between 4 and 1024. An invalid N causes a RANGE exception.
PARAMETERS

X Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftreal, hanncplx, hannreal, powerspectrum

158 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash erasechip

void flash erasechip(FlashDescriptor * £d);

DESCRIPTION

Erases an entire flash memory chip.

Note: £d must have already been initialized with f1ash_init before calling this
function. See flash init description for further restrictions.

PARAMETERS

fd Pointer to flash descriptor of the chip to erase.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasesector, flash gettype, flash init, flash read,
flash readsector, flash sector2xwindow, flash writesector

Dynamic C Functions rabbit.com

159

http://www.rabbit.com

flash erasesector

int flash erasesector(FlashDescriptor * £d, word which);

DESCRIPTION

Erases a sector of a flash memory chip.

Note: £d must have already been initialized with f1ash_init before calling this
function. See flash init description for further restrictions.

PARAMETERS
fd Pointer to flash descriptor of the chip to erase a sector of.
which The sector to erase.

RETURN VALUE

0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash gettype, flash init, flash read,
flash readsector, flash sector2xwindow, flash writesector

160 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash gettype

int flash gettype(FlashDescriptor * £d);

DESCRIPTION
Returns the 16-bit flash memory type of the flash memory.

Note: £d must have already been initialized with f1ash_init before calling this
function. See flash init description for further restrictions.

PARAMETERS

fd The FlashDescriptor of the memory to query.

RETURN VALUE
The integer representing the type of the flash memory.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash init, flash read,
flash readsector, flash sector2xwindow, flash writesector

Dynamic C Functions rabbit.com

161

http://www.rabbit.com

flash init

int flash init(FlashDescriptor * fd, int mb3cr);

DESCRIPTION

Initializes an internal data structure of type FlashDescriptor with information about the
flash memory chip. The Memory Interface Unit bank register (MB3CR) will be assigned the
value of mb3 cr whenever a function accesses the flash memory referenced by £d. See the Rab-
bit 2000 Users Manual for the correct chip select and wait state settings.

Note: Improper use of this function can cause your program to be overwritten or oper-
ate incorrectly. This and the other flash memory access functions should not be used on
the same flash memory that your program resides on, nor should they be used on the
same region of a second flash memory where a file system resides.

Use WriteFlash () to write to the primary flash memory.

PARAMETERS
fd This is a pointer to an internal data structure that holds information about
a flash memory chip.
mb3cr This is the value to set MB3CR to whenever the flash memory is accessed.

0xc2 (i.e., CS2,/0OE0, /WEOQ, 0 WS) is a typical setting for the second flash
memory on the TCP/IP Dev Kit, the Intellicom, the Advanced Ethernet
Core, and the RabbitLink.

RETURN VALUE

0: Success.
1: Invalid flash memory type.
- 1: Attempt made to initialize primary flash memory.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash read,
flash readsector, flash sector2xwindow, flash writesector

162 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash read

int flash read(FlashDescriptor * fd, word sector, word offset,
unsigned long buffer, word length);

DESCRIPTION

Reads data from the flash memory and stores it in buf fer.

Note: £d must have already been initialized with f1ash init before calling this
function. See the f1lash init description for further restrictions.

PARAMETERS

f£d The FlashDescriptor of the flash memory to read from.

sector The sector of the flash memory to read from.

offset The displacement, in bytes, from the beginning of the sector to start read-
ing at.

buffer The physical address of the destination buffer. TIP: A logical address can
be changed to a physical with the function paddr.

length The number of bytes to read.

RETURN VALUE

0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash readsector, flash sector2xwindow, flash writesector, paddr

Dynamic C Functions rabbit.com

163

http://www.rabbit.com

flash readsector

int flash readsector(FlashDescriptor * fd, word sector, unsigned
long buffer);

DESCRIPTION

Reads the contents of an entire sector of flash memory into a buffer.

Note: £d must have already been initialized with £1ash init before calling this
function. See flash_init description for further restrictions.

PARAMETERS
£d The FlashDescriptor of the flash memory to read from.
sector The source sector to read.
buffer The physical address of the destination buffer. TIP: A logical address can

be changed to a physical with the function paddr ().

RETURN VALUE

0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash sector2xwindow, flash writesector

164 rabbit.com Dynamic C Functions

http://www.rabbit.com

flash sector2xwindow

void * flash sector2xwindow(FlashDescriptor * £d, word sector);

DESCRIPTION

This function sets the MB3CR and XPC value so the requested sector falls within the XPC win-
dow. The MB3CR is the Memory Interface Unit bank register. XPC is one of four Memory
Management Unit registers. See f1lash init description for restrictions.

PARAMETERS
fd The FlashDescriptor of the flash memory.
sector The sector to set the XPC window to.

RETURN VALUE
The logical offset of the sector.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash readsector, flash writesector

Dynamic C Functions rabbit.com

165

http://www.rabbit.com

flash writesector

int flash writesector(FlashDescriptor * £fd, word sector, unsigned
long buffer);

DESCRIPTION

Writes the contents of buf fer to sectoxr on the flash memory referenced by £d.

Note: £d must have already been initialized with £1ash init before calling this
function. See flash_init description for further restrictions.

PARAMETERS
fd The FlashDescriptor of the flash memory to write to.
sector The destination sector.
buffer The physical address of the source. TIP: A logical address can be changed

to a physical address with the function paddr ().

RETURN VALUE

0: Success.

LIBRARY
FLASH.LIB

SEE ALSO

flash erasechip, flash erasesector, flash gettype, flash init,
flash read, flash readsector, flash sector2xwindow

166 rabbit.com Dynamic C Functions

http://www.rabbit.com

floor

float floor(float x);

DESCRIPTION

Computes the largest integer less than or equal to the given number.

PARAMETERS

X Value to round down.

RETURN VALUE

Rounded down value.

LIBRARY
MATH.LIB

SEE ALSO

ceil, fmod

fmod

float fmod(float x, float y):

DESCRIPTION

Calculates modulo math.

PARAMETERS
x Dividend
Yy Divisor

RETURN VALUE

Returns the remainder of x/y. The remaining part of x after all multiples of y have been re-
moved. For example, if x is 22.7 and y is 10.3, the integral division result is 2. Then the remain-
deris: 22.7-2x10.3=2.1.

LIBRARY
MATH.LIB

SEE ALSO

ceil, floor

Dynamic C Functions rabbit.com 167

http://www.rabbit.com

fopen rd (FSl)

int fopen rd(File * £, FileNumber fnum);

DESCRIPTION

Opens a file for reading.

PARAMETERS
£ A pointer to the file to read.
fnum A number in the range 1 to 127 inclusive that identifies the file in the flash

file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

168 rabbit.com Dynamic C Functions

http://www.rabbit.com

fopen rd (FS2)

int fopen rd(File * £, FileNumber name);

DESCRIPTION

Open file for reading only. See fopen_ wr () for a more detailed description.

PARAMETERS
£ Pointer to file descriptor (uninitialized).
name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
1 0: Failure.

ERRNO VALUES

ENOENT - File does not exist, or metadata extent number does not match an existing file.

LIBRARY
fs2.1ib

SEE ALSO
fclose, fopen wr (FS2)

Dynamic C Functions rabbit.com

169

http://www.rabbit.com

fopen wr (FS1)

int fopen wr(File * £, FileNumber fnum);

DESCRIPTION

Opens a file for writing.

PARAMETERS
£ A pointer to the file to write.
fnum A number in the range 1 to 127 inclusive that identifies the file in the flash

file system.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

170 rabbit.com Dynamic C Functions

http://www.rabbit.com

fopen wr (FS2)

int fopen wr(File * £, FileNumber name);

DESCRIPTION

Open file for read or write. The given file number is composed of two parts: the low byte con-
tains the file number (1 to 255 inclusive) and the high byte, if not zero, contains the metadata
extent number. If the extent number is zero, it defaults to the correct metadata extent - this is for
the purpose of validating an expected extent number. Most applications should just pass the file
number with zero high byte.

A file may be opened multiple times, with a different file descriptor pointer for each call, which
allows the file to be read or written at more than one position at a time. A reference count for
the actual file is maintained, so that the file can only be deleted when all file descriptors refer-
ring to this file are closed.

fopen wr () or fopen rd () must be called before any other function from this library is
called that requires a File pointer. The "current position" is set to zero i.e. the start of the file.

When a file is created, it is automatically opened for writing thus a subsequent call to
fopen wr () is redundant.

PARAMETERS
£ Pointer to file descriptor (uninitialized).
name File number (1 to 255 inclusive).

RETURN VALUE

0: Success.
1 0: Failure.

ERRNO VALUES

ENOENT - File does not exist, or metadata extent number does not match an existing file.

LIBRARY
fs2.1ib

SEE ALSO
fclose, fopen rd (FS2)

Dynamic C Functions rabbit.com 171

http://www.rabbit.com

forceSoftReset

void forceSoftReset(void);
DESCRIPTION
Forces the board into a software reset by jumping to the start of the BIOS.

LIBRARY
SYS.LIB

fread (FS1)

int fread(File * £, char * buf, int len);

DESCRIPTION

Reads 1en bytes from a file pointed to by £, starting at the current offset into the file, into buff-
er. Data is read into buffer pointed to by buf.

PARAMETERS
£ A pointer to the file to read from.
buf A pointer to the destination buffer.
len Number of bytes to copy.

RETURN VALUE
Number of bytes read.

LIBRARY
FILESYSTEM.LIB

172 rabbit.com Dynamic C Functions

http://www.rabbit.com

fread (FS2)

int fread(File * £, void * buf, int len);

DESCRIPTION

Read data from the “current position” of the given file. When the file is opened, the current po-
sition is 0, meaning the start of the file. Subsequent reads or writes advance the position by the
number of bytes read or written. £seek () can also be used to position the read point.

If the application permits, it is much more efficient to read multiple data bytes rather than read-
ing one-by-one.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen rd (), fopen wr () or
fcreate()).
buf Data buffer located in root data memory or stack. This must be dimen-
sioned with at least len bytes.
len Length of data to read (0 to 32767 inclusive).

RETURN VALUE

len: Success.

<len: Partial success. Returns amount successfully read. errno gives further details (prob-
ably 0 meaning that end-of-file was encountered).

0: Failure, or 1en was zero.

LIBRARY
FS2.LIB

ERRNO VALUES

EBADFD - File descriptor not opened.

EINVAL - len less than zero.

0 - Success, but 1en was zero or EOF was reached prior to reading 1en bytes.
EIO - /O error.

SEE ALSO
fseek (FS2), fwrite (FS2)

Dynamic C Functions rabbit.com

173

http://www.rabbit.com

frexp

float frexp(float x, int * n);

DESCRIPTION

Splits x into a fraction and exponent, f * (2%).

PARAMETERS
X Number to split
n An integer

RETURN VALUE

The function returns the exponent in the integer *n and the fraction between 0.5, inclusive and

1.0.
LIBRARY
MATH.LIB
SEE ALSO
exp, ldexp
174 rabbit.com

Dynamic C Functions

http://www.rabbit.com

fs format (FS1l)

int fs format(long reserveblocks, int num blocks, unsigned long
wearlevel);

DESCRIPTION
Initializes the internal data structures and file system. All blocks in the file system are erased.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_FLASH is defined
this value should be 0 or a multiple of the block size. When FS_RAM
is defined this parameter is ignored.

num_blocks The number of blocks to allocate for the file system. With a default
block size 0f 4096 bytes and a 256K flash memory, this value might be
64.

wearlevel This value should be 1 on a new flash memory, and some higher value

on an unformatted used flash memory. If you are reformatting a flash
memory you can set wearlevel to 0 to keep the old wear leveling.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

EXAMPLE

This program can be found in samples/filesystem/format.c.

#define FS_FLASH
#use "filesystem.lib"
#define RESERVE 0
#define BLOCKS 64
#define WEAR 1

main () {
if (fEs_format (RESERVE, BLOCKS, WEAR)) {
printf ("error formatting flash\n") ;
} else {
printf ("flash successfully formatted\n") ;

Dynamic C Functions rabbit.com 175

http://www.rabbit.com

fs format (FS2)

int fs_format (long reserveblocks, int num blocks, unsigned wearlevel
)

DESCRIPTION

Format all extents of the file system. This must be called after calling £s_init (). Only ex-
tents that are not defined as reserved are formatted. All files are deleted.

PARAMETERS

reserveblocks Must be zero. Retained for backward compatibility.
num_blocks Ignored (backward compatibility).

wearlevel Initial wearlevel value. This should be 1 if you have a new flash, and
some larger number if the flash is used. If you are reformatting a flash,
you can use 0 to use the old flash wear levels.
RETURN VALUE

0: Success.
1 0: Failure.

ERRNO VALUES

EINVAL - the reserveblocks parameter was non-zero.
EBUSY - one or more files were open.

EIO - I/O error during format. If this occurs, retry the format operation If it fails again, there
is probably a hardware error.

SEE ALSO

fs _init (FS2), 1lx_ format

176 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs init (FS1)

int f£s_init(long reserveblocks, int num blocks);

DESCRIPTION
Initialize the internal data structures for an existing file system. Blocks that are used by a file
are preserved and checked for data integrity.

PARAMETERS

reserveblocks Starting address of the flash file system. When FS_FLASH is defined
this value should be 0 or a multiple of the block size. When FS_RAM is de-
fined this parameter is ignored.

num_blocks The number of blocks that the file system contains. By default the block
size is 4096 bytes.
RETURN VALUE
0:Success.
1: Failure.
LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com 177

http://www.rabbit.com

fs init (FS2)

int f£s_init(long reserveblocks, int num blocks);

DESCRIPTION

Initialize the filesystem. The static structure _fs contains information that defines the number
and parameters associated with each extent or “partition.” This function must be called before
any of the other functions in this library, except for fs setup (), fs get * 1x() and
fs get 1x size().
Pre-main initialization will create up to 3 devices:

* The second flash device (if available on the board)

» Battery-backed SRAM (if FS2 RAM RESERVE defined)

* The first (program) flash (if both XMEM RESERVE_SIZE and
FS2 USE_ PROGRAM FLASH defined)

The LX numbers of the default devices can be obtained using the £s_get flash 1x(),
fs get ram 1x() and fs_get other 1x() calls. If none of these devices can be set
up successfully, £s init () will return ENOSPC when called.

This function performs complete consistency checks and, if necessary, fixups for each LX. It
may take up to several seconds to run. It should only be called once at application initialization
time.

Note: When using uC/OS-1I, £s_init () must be called before 0OSInit ().

PARAMETERS
reserveblocks Must be zero. Retained for backward compatibility.

num_blocks Ignored (backward compatibility).

RETURN VALUE

0: Success.
1 0: Failure.

ERRNO VALUES

EINVAL - the reserveblocks parameter was non-zero.

EIO - I/O error. This indicates a hardware problem.

ENOMEM - Insufficient memory for required buffers.

ENOSPC - No valid extents obtained e.g. there is no recognized flash or RAM memory device
available.

LIBRARY
fs2.1ib

SEE ALSO
fs _setup (FS2), fs get flash 1x (FS2)

178 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs reserve blocks (FSl)

int fs_reserve_blocks(int blocks);

DESCRIPTION

Sets up a number of blocks that are guaranteed to be available for privileged files. A privileged
file has an identifying number in the range 128 through 143. This function is not needed in most
cases. If it is used, it should be called immediately after fs_init or £s format.

PARAMETERS

blocks Number of blocks to reserve.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FILESYSTEM.LIB

fsck (FS1)
int fsck(int flash);
DESCRIPTION
Check the filesystem for errors
PARAMETERS
flash A bitmask indicating which checks to NOT perform. The following checks

are available:

FSCK_HEADERS - Block headers.
FSCK_CHECKSUMS - Data checksums.
FSCK_VERSION - Block versions, from a failed write.

RETURN VALUE

0: Success.
1 0: Failure, this is a bitmask indicating which checks failed.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com 179

http://www.rabbit.com

fseek (FS1)

int fseek(File * £, long to, char whence);

DESCRIPTION

Places the read pointer at a desired location in the file.

PARAMETERS
£ A pointer to the file to seek into.
to The number of bytes to move the read pointer. This can be a positive or
negative number.
whence The location in the file to offset from. This is one of the following con-
stants.
SEEK_SET - Seek from the beginning of the file.
SEEK _CUR - Seek from the current read position in the file.
SEEK_END - Seek from the end of the file.
EXAMPLE

To seek to 10 bytes from the end of the file £, use

fseek (£, -10, SEEK END) ;

To rewind the file £ by 5 bytes, use
fseek (£, -5, SEEK CUR);

RETURN VALUE
0: Success.

1: Failure.

LIBRARY

FILESYSTEM.LIB

180 rabbit.com

Dynamic C Functions

http://www.rabbit.com

fseek (FS2)

int fseek(File * £, long where, char whence);

DESCRIPTION

Set the current read/write position of the file. Bytes in a file are sequentially numbered starting
at zero. If the current position is zero, then the first byte of the file will be read or written. If the
position equals the file length, then no data can be read, but any write will append data to the
file.

fseek () allows the position to be set relative to the start or end of the file, or relative to its
current position.

In the special case of SEEK_RAW, an unspecified number of bytes beyond the known end-of-

file may be readable. The actual amount depends on the amount of space left in the last internal
block of the file. This mode only applies to reading, and is provided for the purpose of data re-
covery in the case that the application knows more about the file structure than the filesystem.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen rd (), fopen wr () or
fcreate()).
where New position, or offset.
whence One of the following values:

SEEK_SET: 'where' (non-negative only) is relative to start of file.
SEEK CUR: 'where' (positive or negative) is relative to the current posi-
tion.

SEEK_END: 'where' (non-positive only) is relative to the end of the file.
SEEK_RAW: Similar to SEEK END, except the file descriptor is set in a
special mode which allows reading beyond the end of the file.

RETURN VALUE

0: Success.

1 0: The computed position was outside of the current file contents, and has been adjusted to the
nearest valid position.

ERRNO VALUES

None.

LIBRARY
FS2.LIB

SEE ALSO
ftell (FS2), fread (FS2), fwrite (FS2)

Dynamic C Functions rabbit.com 181

http://www.rabbit.com

fs get flash 1x (FS2)

FSLXnum fs get flash 1x(void);

DESCRIPTION

Returns the logical extent number of the preferred flash device. This is the second flash if one
is available on your hardware, otherwise it is the reserved area in your program flash. In order
for the program flash to be available for use by the file system, you must define two constants:
the first constant is XMEM RESERVE_SIZE near the top of BIOS\RABBITBIOS. C. This
value is set to the amount of program flash to reserve (in bytes). This is required by the BIOS.
The second constant is set in your code before #use "fs2.1lib".

FS2 USE PROGRAM FLASH must be defined to the number of KB (1024 bytes) that will ac-
tually be used by the file system. If this is set to a larger value than the actual amount of reserved
space, then only the actual amount will be used.

The sample program SAMPLES\FILESYSTEM\FS2INFO. C demonstrates use of this func-
tion.

This function may be called before calling £s init ().

RETURN VALUE

0: There is no flash file system available.
1 0: Logical extent number of the preferred flash.

LIBRARY
FS2.1lib

SEE ALSO
fs_get ram 1lx (FS2), fs get other 1x (FS2)

182 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs get 1x (FS2)

FSLXnum fs get 1x(int meta);

DESCRIPTION

Return the current extent (LX) number for file creation. Each file has two parts: the main bulk
of data, and the metadata which is a relatively small, fixed, amount of data used to journal
changes to the file. Both data and metadata can reside on the same extent, or they may be sep-

arated.
PARAMETERS
meta 1: return logical extent number for metadata.
0: return logical extent number for data.
RETURN VALUE

Logical extent number.

LIBRARY
FS2.1lib

SEE ALSO
fcreate (FS2), fs_set 1x (FS2)

Dynamic C Functions rabbit.com 183

http://www.rabbit.com

fs get 1x size (FS2)

long fs get 1lx size(FSLXnum 1lxn, int all, word ls shift);

DESCRIPTION

Returns the size of the specified logical extent, in bytes. This information is useful when initial-
ly partitioning an LX, or when estimating the capacity of an LX for user data. all is a flag
which indicates whether to return the total data capacity (as if all current files were deleted) or
whether to return just the available data capacity. The return value accounts for the packing ef-
ficiency which will be less than 100% because of the bookkeeping overhead. It does not account
for the free space required when any updates are performed; however this free space may be
shared by all files on the LX. It also does not account for the space required for file metadata.
You can account for this by adding one logical sector for each file to be created on this LX. You
can also specify that the metadata be stored on a different LX by use of £s_set 1x().

This function may be called either before or after £s_init (). If called before, then the
1s_shift parameter must be set to the value to be used in £s_setup (), since the LS size
is not known at this point. 1s shift can also be passed as zero, in which case the default
size will be assumed. a1l must be non-zero if called before £s_init (), since the number of
files in use is not yet known.

PARAMETERS
1xn Logical extent number to query.
all Boolean: 0 for current free capacity only, 1 for total.
Must use 1 if calling before £s_init ().
ls shift Logical sector shift i.e. log base 2 of LS size (6 to 13); may be zero to use

default.

RETURN VALUE

0: The specified LX does not exist.
1 0: Capacity of the LX in bytes.

LIBRARY
FS2.1ib

184 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs get other 1lx (FS2)

FSLXnum fs get other 1lx(void);

DESCRIPTION

Returns the logical extent number of the non-preferred flash device. If it exists, this is usually
the program flash. See the description under £s_get flash 1x () fordetails about setting
up the program flash for use by the filesystem.

The sample program Samples\FILESYSTEM\FS2INFO. C demonstrates use of this func-
tion.

This function may be called before calling £s init ().

RETURN VALUE

0: There is no other flash filesystem available.
1 0: Logical extent number of the non-preferred flash.

LIBRARY
FS2.LIB

SEE ALSO
fs_get_ram_lIx (FS2), fs_get_flash_Ix (FS2)

Dynamic C Functions rabbit.com

185

http://www.rabbit.com

fs get ram 1lx (FS2)

FSLXnum fs get ram 1lx(void);

DESCRIPTION

Return the logical extent number of the RAM file system device. This is only available if you
have defined FS2 RAM RESERVE to a non-zero number of bytes in the BIOS.

A RAM filesystem is only really useful if you have battery-backed SRAM on the board. You
can still use a RAM file system on volatile RAM, but of course files will not persist over power
cycles and you should explicitly format the RAM filesystem at power-up.

The sample program Samples\FILESYSTEM\FS2INFO.C demonstrates use of this func-
tion.

This function may be called before calling £s_init ().

RETURN VALUE

0: There is no RAM filesystem available.
1 0: Logical extent number of the RAM device.

LIBRARY
FS2.LIB

SEE ALSO
fs get flash 1x (FS2), fs get other 1x (FS2)

186 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs set 1x (FS2)

int f£s_set 1lx(FSLXnum meta, FSLXnum data);

DESCRIPTION

Sets the default logical extent (LX) numbers for file creation. Each file has two parts: the main
bulk of data, and the metadata which is a relatively small, fixed amount of data used to journal
changes to the file. Both data and metadata can reside on the same extent, or they may be sep-
arated. The metadata, no matter where it is located, consumes one sector.

The file creation functions allow the metadata extent to be explicitly specified (in the high byte
of the file number), however it is usually easier to call £s_set 1x () to set appropriate de-
faults. Calling fs_set 1x () isthe only way to specify the data extent.

Iffs _set 1x() isnever called, both data and metadata will default to the first non-reserved
extent number.

PARAMETERS
meta Extent number for metadata.
data Extent number for data.

RETURN VALUE
0: Success.

1 0: Error, e.g. non-existent LX number.

ERRNO VALUES

ENODEYV - no such extent number, or extent is reserved.

LIBRARY
FS2.LIB

SEE ALSO
fcreate (FS2)

Dynamic C Functions rabbit.com

187

http://www.rabbit.com

fs setup (FS2)

FSLXnum fs setup(FSLXnum lxn, word ls shift, int reserve_ it, void *
rfu, int partition it, word part, word part ls shift, int
part reserve, void * part rfu);

DESCRIPTION

To modify or add to the default extents, this function must be called before calling
fs_init ().Ifcalled after fs_init (), the filesystem will be corrupted.

fs_setup () runsin one of two basic modes, determined by the partition it parame-
ter. f partition it isnon-zero, then the specified extent (1xn, which must exist), is split
into two extents according to the given proportions. If partition_ it is zero, then the spec-
ified extent must not exist; it is created. This use is beyond the scope of this note, since it in-
volves filesystem internals. The paritioning usage is described here.

partition it maybeFS MODIFY EXTENT in which case the base extent, 1xn, is mod-
ified to use the specified 1s_shift and reserve_ it parameters (the other parameters are
ignored).

partition it maybesetto FS PARTITION FRACTION (other values reserved). This
causes extent number 1xn to be split. The first half is still referred to as extent 1xn, and the
other half is assigned a new extent number, which is returned.

The base extent number may itself have been previously partitioned, or it should be 1 for the
2nd flash device, or possibly 2 for the NVRAM device.

PARAMETERS
1xn Base extent number to partition or modify.
ls shift New logical sector size to assign to base partition, or zero to not alter it.
This is expressed as the log base 2 of the desired size, and must be a num-
ber between 6 and 13 inclusive.
reserve it TRUE if base partition is to be marked reserved.
rfu A pointer reserved for future use. Pass as null.

partition it Mustbe setto FS PARTITION FRACTION or
FS_MODIFY EXTENT. The following parameters are ignored if this
parameter is not FS_PARTITION FRACTION.

188 rabbit.com Dynamic C Functions

http://www.rabbit.com

fs setup (FS2) (cont’d)

part The fraction of the existing base extent to assign to the new extent. This
number is expressed as a fixed-point binary number with the binary
point to the left of the MSB e.g. 0x3000 assigns 3/16 of the base extent
to the new partition, updating the base extent to 13/16 of its original
size. The nearest whole number of physical sectors is used for each ex-

tent.

part 1ls shift Logical sector size to assign to the new extent, or zero to use the same
LS size as the base extent. Expressed in same units as parameter 2.

part reserve TRUE if the new extent is to be reserved.
part_rfu A pointer reserved for future use. Pass as null.

RETURN VALUE

0: Failure, extent could not be partitioned.
10: Success, number of the new extent, or same as 1xd for existing extent modification.

ERRNO VALUES
ENOSPC - one or other half would contain an unusably small number of logical sectors, or the
extent table is full. In the latter case, #define FS MAX LX to a larger value.

EINVAL - partition_ it setto aninvalid value, or other parameter invalid.
ENODEYV - specified base extent number not defined.

LIBRARY
FS2.LIB

SEE ALSO
fs _init (FS2)

Dynamic C Functions rabbit.com

189

http://www.rabbit.com

fs sync (FS2)

int fs sync(void);

DESCRIPTION

Flush any buffers retained in RAM to the underlying hardware device. The file system does not
currently perform any buffering, however future revisions of this library may introduce buffer-
ing to improve performance. This function is similar to ££1ush (), except that the entire file
system is synchronized instead of the data for just one file. Use £s_sync () in preference to
fflush () ifthere is only one extent in the filesystem.

RETURN VALUE

0: Success.
1 0: Failure.

ERRNO VALUES
EIO -1/O error.

LIBRARY
FS2.LIB

SEE ALSO
fflush (FS2)

190 rabbit.com Dynamic C Functions

http://www.rabbit.com

ftell (Fsl1)

long ftell(File * £);

DESCRIPTION

Gets the offset from the beginning of a file that the read pointer is currently at.

TIP: ftell () can be used with £seek () to find the length of a file.

fseek (f, 0, SEEK END) ; // seek to the end of the file
FileLength = ftell (f); // find the length of the file

PARAMETERS

£ A pointer to the file to query.

RETURN VALUE

The offset in bytes of the read pointer from the beginning of the file: Success.
- 1: Failure.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com

191

http://www.rabbit.com

ftell (Fs2)

long ftell(File * £);

DESCRIPTION

Return the current read/write position of the file. Bytes in a file are sequentially numbered start-
ing at zero. If the current position is zero, then the first byte of the file will be read or written.
If the position equals the file length, then no data can be read, but any write will append data to
the file.

Note that no checking is done to see if the file descriptor s valid. If the File is not actually open,
the return value will be random.

PARAMETERS

£ Pointer to file descriptor (initialized by fopen rd (), fopen wr () or
fcreate()).

RETURN VALUE

Current read/write position (0 to length-of-file).

ERRNO VALUES

None

LIBRARY
fs2.1ib

SEE ALSO
fseek (FS2)

192 rabbit.com Dynamic C Functions

http://www.rabbit.com

fshift

int fshift(File * £, int len, wvoid * buf);

DESCRIPTION

Delete data from the start of a file opened for writing. Optionally, the data that was removed can
be read into a buffer. The “current position” of the file descriptor is adjusted to take account of
the changed file offsets. If the current position is pointing into the data that is removed, then it
is set to zero, i.e., the start of data immediately after the deleted section.

The specified file must not be opened with other file descriptors, otherwise an EBUSY error is
returned. The exceptionto thisisif FS2 SHIFT DOESNT UPDATE_ FPOS isdefined before
#use fs2.1ib. Ifdefined, multiple file descriptors can be opened, but their current position
will not be updated if £shift () is used. In this case, the application should explicitly use
fseek () on all file descriptors open on this file (including the one used to perform the
fshift ()). Ifthis is not done, then their current position is effectively advanced by the num-
ber of characters shifted out by the fshift ().

The purpose of this function is to make it easy to implement files which worm their way through
the filesystem: adding at the head and removing at the tail, such that the total file size remains
approximately constant.

Surprisingly, it is possible for an out-of-space error to occur, since the addition of the journaling
(meta-data) entry for the shift operation may cause an error before deleted blocks (if any) are
made available.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen wr () or fcreate()).
len Length of data to remove (0 to 32767 inclusive).
*buf Data buffer located in root data memory or stack. This must be dimen-

sioned with at least 1 en bytes. This parameter may also be null if the de-
leted data is not needed.

Dynamic C Functions rabbit.com 193

http://www.rabbit.com

fshift (cont’d)

RETURN VALUE

len: Success.

<len: Partial success - returns amount successfully deleted. errno gives further details (prob-
ably ENOSPC)

0: Error or 1en was zero.

ERRNO VALUES

EBADFD - File descriptor not opened, or is read-only.

EINVAL - len less than zero.

0 - Success, but 1en was zero.

EIO - /O error.

ENOSPC - extent out of space.

EBUSY - file opened more than once. This is only possible if

FS2 SHIFT DOESNT UPDATE FPOS is not defined, which is the default case.

LIBRARY
FS2.LIB

SEE ALSO
fread (FS2), fwrite (FS2)

194 rabbit.com Dynamic C Functions

http://www.rabbit.com

fwrite (FS1)

int fwrite(File * £, char * buf, int len);

DESCRIPTION

Appends 1en bytes from the source buffer to the end of the file.

PARAMETERS
£ A pointer to the file to write to.
buf A pointer to the source buffer.
len The number of bytes to write.

RETURN VALUE

The number of bytes written: Success.
0: Failure.

LIBRARY
FILESYSTEM.LIB

Dynamic C Functions rabbit.com

195

http://www.rabbit.com

fwrite (FS2)

int fwrite(File * £, wvoid * buf, int len);

DESCRIPTION

Write data to file opened for writing. The data is written starting at the current position. This is
zero (start of file) when it is opened or created, but may be changed by fread (), fwrite (),
fshift () or £seek () functions. After writing the data, the current position is advanced to
the position just after the last byte written. Thus, sequential calls to fwrite () will add or ap-
pend data contiguously.

Unlike the previous file system (FILESYSTEM. LIB), this library allows files to be overwrit-
ten not just appended. Internally, overwrite and append are different operations with differing
performance, depending on the underlying hardware. Generally, appending is more efficient es-
pecially with byte-writable flash memory. If the application allows, it is preferable to use ap-
pend/shift rather than overwrite. In order to ensure that data is appended, use fseek (£, 0,
SEEK_END) before calling fwrite ().

The same current-position pointer is used for both read and write. If interspersing read and
write, then £seek () should be used to ensure the correct position for each operation. Alterna-
tively, the same file can be opened twice, with one descriptor used for read and the other for
write. This precludes use of £shift (), since it does not tolerate shared files.

PARAMETERS
£ Pointer to file descriptor (initialized by fopen wr () or fcreate()).
buf Data buffer located in root data memory or stack.
len Length of data (0 to 32767 inclusive).

RETURN VALUE

len: Success.
<len: Partial success. Returns amount successfully written. errno gives details.
0: Failure, or 1en was zero.

ERRNO VALUES

EBADFD - File descriptor not opened, or is read-only.
EINVAL - len less than zero.

0 - Success, but 1en was zero.

EIO - /O error.

ENOSPC - extent out of space.

LIBRARY
fs2.LIB

SEE ALSO
fread (FS2)

196 rabbit.com Dynamic C Functions

http://www.rabbit.com

ftoa

int ftoa(float £, char * buf);

DESCRIPTION
Converts a float number to a character string.
The character string only displays the mantissa up to 9 digits, no decimal points, and a minus

sign if £ is negative. The function returns the exponent (of 10) that should be used to compen-
sate for the string: ftoa (1.0, buf) yields buf="100000000" and returns - 8.

PARAMETERS
£ Float number to convert.
buf Converted string. The string is no longer than 10 characters long.

RETURN VALUE
The exponent of the number.

LIBRARY
STDIO.LIB

SEE ALSO

utoa, itoa

getchar

char getchar(wvoid);

DESCRIPTION
Busy waits for a character to be typed from the stdio window in Dynamic C. The user should make
sure only one process calls this function at a time.

RETURN VALUE
A character typed in the Stdio window in Dynamic C.

LIBRARY
STDIO.LIB

SEE ALSO
gets, putchar

Dynamic C Functions rabbit.com 197

http://www.rabbit.com

getcrc

int getcrc(char * dataarray, char count, int accum);

DESCRIPTION

Computes the Cyclic Redundancy Check (CRC), or check sum, for count bytes (maximum
255) of data in buffer. Calls to getcrc can be “concatenated” using accum to compute the

CRC for a large buffer.
PARAMETERS
dataarray Data buffer
count Number of bytes. Maximum is 255.
accum Base CRC for the data array.

RETURN VALUE
CRC value.

LIBRARY
MATH.LIB

getdivider19200

char getdivider19200(void);

DESCRIPTION
This function returns a value that is used in baud rate calculations.
The correct value is returned regardless of the compile mode. In separate [&D space mode, the
divider value is stored as a define byte in code space, so directly accessing the variable will re-
sult in an incorrect load (from constant data space). This function uses the 1dp instruction,

which circumvents the separate I&D default loading scheme so that the correct value is re-
turned.

RETURN VALUE

The value used in baud rate calculation.

LIBRARY
SYS.LIB

198 rabbit.com Dynamic C Functions

http://www.rabbit.com

gets

char * gets(char * s);

DESCRIPTION

Waits for a string terminated by <CR> at the stdio window. The string returned is null terminat-
ed without the return. The user should make sure only one process calls this function at a time.

PARAMETERS

s The input string is put to the location pointed to by the argument s. The
caller is responsible to make sure the location pointed to by s is big enough
for the string.

RETURN VALUE

Same pointer passed in, but string is changed to be null terminated.

LIBRARY
STDIO.LIB

SEE ALSO
puts, getchar

Dynamic C Functions rabbit.com

199

http://www.rabbit.com

_GetSysMacroIndex

int GetSysMacrolIndex(int n, char * buf, uint32 * value);

DESCRIPTION
Skips to the nth macro entry and retrieves the macro name (as defined by the compiler), and the
value of the macro as defined in the system macro table. The system macro table contains board
specific configuration parameters that are defined by the compiler and can be retrieved at runt-
ime through this interface. The flash driver must be initialized and the System ID block must be
read before this function will return accurate results.

This function only applies to boards with Version 5 or later System ID blocks.

PARAMETERS
n The index in the system macro table.
buf Character array to contain and return macro name (copied from system
macro table). MUST BE AT LEAST SYS_MACRO_LENGTH bytes or
function will overflow buffer and can crash system!
value Pointer to macro value to return to caller.

RETURN VALUE

0: if successful
-1: invalid address or range (use to find end of table)
-2: 1D block or macro table invalid

LIBRARY
IDBLOCK.LIB

SEE ALSO
_GetSysMacroValue

200 rabbit.com Dynamic C Functions

http://www.rabbit.com

_GetSysMacroValue

int GetSysMacroValue(char * name, long * wvalue);

DESCRIPTION

Finds the system table macro named by the first parameter (as defined by the compiler) and re-
trieves the value of the macro as defined in the system macro table. The system macro table con-
tains board specific configuration parameters that are define by the compiler and can be
retrieved at runtime through this interface. The flash driver must be initialized and the System
ID block must be read before this function will return accurate results.

See writeUserBlockArray for more details.

This function only applies to boards with Version 5 or later System ID blocks.

PARAMETERS
name Name of System ID block macro (acts as lookup key).
value Pointer to macro value to return to caller.

RETURN VALUE

0: if successful
-1: Macro name not found
-2: No valid ID block found (block version 3 or later)
- 3: First parameter is a bad macro name

LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlockArray

Dynamic C Functions rabbit.com 201

http://www.rabbit.com

GetVectExtern2000

unsigned GetVectExtern2000(void);

DESCRIPTION

Reads the address of external interrupt table entry. This function really just returns what is present
in the table. The return value is meaningless if the address of the external interrupt has not been
written.

This function should be used for Rabbit 2000 processors that are marked IQ2T in the 3rd line
of text across the face of the chip. It will work for other versions of the Rabbit 2000 but should
be deprecated in favor of GetVectExtern3000 () which allows the use of two external
interrupts. (Please see document TN301, “Rabbit 2000 Microprocessor Interrupt Issue,” on the
Rabbit Semiconductor website for more information.)

RETURN VALUE

Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectIntern, SetVectExtern2000, SetVectIntern, GetVectExtern3000

202 rabbit.com Dynamic C Functions

http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml
http://www.rabbit.com

GetVectExtern3000

unsigned GetVectExtern3000(int interruptNum) ;

DESCRIPTION

Reads the address of an external interrupt table entry. This function may be used with all Rabbit
3000 processors and all Rabbit 2000 processors with the exception of the ones marked IQ2T in
the 3rd line of text across the face of the chip. For those, use the function
GetVectExtern2000 () instead.

GetVectExtern3000 () returns the value at address:
(external vector table base) + (interruptNum * 8) + 1
PARAMETER

interruptNum Interrupt number. Should be 0 or 1.

RETURN VALUE

Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO

SetVectExtern3000, SetVectIntern, GetVectIntern, GetVectExtern2000

Dynamic C Functions rabbit.com 203

http://www.rabbit.com

GetVectIntern

unsigned GetVectIntern(int vectNum) ;

DESCRIPTION

Reads the address of the internal interrupt table entry and returns whatever value is at the address:
(internal vector table base) + (vectNum*1l6) + 1
PARAMETER

vectNum Interrupt number; should be 0-15.

RETURN VALUE

Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern2000, SetVectExtern2000, SetVectIntern

gps_get position

int gps _get position(GPSPositon * newpos, char * sentence);

DESCRIPTION

Parses a sentence to extract position data. This function is able to parse any of the following
GPS sentence formats: GGA, GLL or RMC.

PARAMETERS
newpos A GPSPosition structure to fill.
sentence A string containing a line of GPS data in NMEA-0183 format.

RETURN VALUE

0: Success.
- 1: Parsing error.
-2: Sentence marked invalid.

LIBRARY
gps.lib

204 rabbit.com Dynamic C Functions

http://www.rabbit.com

gps_get utc

int gps _get utc(struct tm * newtime, char * sentence);

DESCRIPTION

Parses an RMC sentence to extract time data.

PARAMETERS
newtime tm structure to fill with new UTC time.
sentence A string containing a line of GPS data in NMEA-0183 format (RMC sen-

tence).

RETURN VALUE

0: Success.
-1: Parsing error.
- 2: Sentence marked invalid.

LIBRARY
GPS.LIB

gps _ground distance

float gps ground distance(GPSPosition * a, GPSPosition * b);

DESCRIPTION
Calculates ground distance (in km) between two geographical points. (Uses spherical earth
model.)
PARAMETERS
a First point.
b Second point.

RETURN VALUE

Distance in kilometers.

LIBRARY
GPS.LIB

Dynamic C Functions rabbit.com 205

http://www.rabbit.com

hanncplx

void hanncplx(int * x, int N, int * blockexp);

DESCRIPTION

Convolves an N-point complex spectrum with the three-point Hann kernel. The filtered spec-
trum replaces the original spectrum.

The function produces the same results as would be obtained by multiplying the corresponding
time sequence by the Hann raised-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is 4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18
db per octave.

N must be a power of 2 and between 4 and 1024. An invalid N causes a RANGE exception.
PARAMETERS

x Pointer to N-element array of complex fractions.

N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftreal, fftrealinv, hanncplx, powerspectrum

206 rabbit.com Dynamic C Functions

http://www.rabbit.com

hannreal

void hannreal(int * x, int N, int * blockexp);

DESCRIPTION

Convolves an N-point positive-frequency complex spectrum with the three-point Hann kernel.
The function produces the same results as would be obtained by multiplying the corresponding
time sequence by the Hann raised-cosine window.

The zero—crossing width of the main lobe produced by the Hann window is 4 DFT bins. The
adjacent sidelobes are 32 db below the main lobe. Sidelobes decay at an asymptotic rate of 18
db per octave.

The imaginary part of the dc term (stored in x [1]) is considered to be the real part of the finax
term. The dc and finax spectral components take part in the convolution along with the other
spectral components. The real part of finax component affects the real part of the X[N-1] com-
ponent (and vice versa), and should not arbitrarily be set to zero unless these components are

unimportant.

PARAMETERS
x Pointer to N-element array of complex fractions.
N Number of complex elements in array x.
blockexp Pointer to integer block exponent.

RETURN VALUE

None. The filtered spectrum replaces the original spectrum.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftreal, fftrealinv, hanncplx, powerspectrum

Dynamic C Functions rabbit.com 207

http://www.rabbit.com

HDLCabortX

void HDLCabortX(void); /* Where X is E or F */

DESCRIPTION

Immediately stops any transmission. An HDLC abort code will be sent if the driver was in the
middle of sending a packet.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

LIBRARY
HDLC PACKET.LIB

HDLCcloseX

void HDLCcloseX(void); /* Where X is E or F */

DESCRIPTION

Disables the HDLC port (E or F). If it was used, the TAT1R resource (timer A1l cascade) is re-
leased. This function is non-reentrant.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

LIBRARY
HDLC PACKET.LIB

SEE ALSO
TAT1R SetValue

208 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCdropX

int HDLCdropX(void); /* Where X is E or F */

DESCRIPTION

Drops the next received packet, freeing up its buffer. This must be used if the packet has been
examined with HDLCpeekX () and is no longer needed. A call to HDLCreveiceX () isthe
only other way to free up the buffer.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

RETURN VALUE

1: Packet dropped.
0: No received packets were available.

LIBRARY
HDLC PACKET.LIB

HDLCerrorX

int HDLCerrorX(unsigned long * bufptr, int * lenptr);
/* Where X is E or F */

DESCRIPTION

This function returns a set of possible error flags as an integer. A received packet with errors is
automatically dropped.

Masks are used to check which errors have occurred. The masks are:

* HDLC_ NOBUFFER - driver ran out of buffers for received packets.

* HDLC_OVERRUN - a byte was overwritten and lost before the ISR could retreive it.
* HDLC_OVERFLOW - a received packet was too long for the buffers.

* HDLC_ ABORTED - a received packet was aborted by the sender during tranmission.
* HDLC_ BADCRC - a packet with an incorrect CRC was received.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

RETURN VALUE

Error flags (see above).

LIBRARY
HDLC PACKET.LIB

Dynamic C Functions rabbit.com

209

http://www.rabbit.com

HDLCextClockX

void HDLCextClockE(int ext clock) /* Where X is E or F */

DESCRIPTION

Configures HDLC to be either internally (default) or externally clocked. This should be called
after HDLCopenX ().

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETER
ext clock 1 for externally clocked
0 for internally clocked
LIBRARY

HDLC PACKET.LIB

210 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCopenX

int HDLCopenX(long baud, char encoding, unsigned long buffers, int
buffer count, int buffer size); /* Where X is E or F */

DESCRIPTION

Opens serial port E or F in HDLC mode. Sets up buffers to hold received packets. This function
is intended for use with the Rabbit 3000 and Rabbit 4000. Please see the chip manuals for more
details on HDLC and the bit encoding modes to use.

PARAMETERS
baud The baud rate for the serial port. Due to imitations in the baud generator,
non-standard baud rates will be approximated within 5% of the value re-
quested.
encoding The bit encoding mode to use. Macro labels for the available options are:
e HDLC NRZ
e HDLC NRZI
e HDLC_ MANCHESTER
* HDLC_ BIPHASE SPACE
e HDLC BIPHASE MARK
buffers A pointer to the start of the extended memory block containing the receive
buffers. This block must be allocated beforehand by the user. The size of
the block should be:
(# of buffers) * ((size of buffer) + 4)

buffer count The number of buffers in the block pointed to by buf fer.

buffer size The capacity of each buffer in the block pointed to by buf fer.

RETURN VALUE

1: Actual baud rate is within 5% of the requested baud rate,
0: Otherwise.

LIBRARY
HDLC PACKET.LIB

SEE ALSO
SetSerialTATxRValues, TAT1R_SetValue

Dynamic C Functions rabbit.com 211

http://www.rabbit.com

HDLCpeekX

int HDLCpeekX(unsigned long * bufptr, int * lenptr);
/* Where X is E or F */

DESCRIPTION

Reports the location and size of the next available received packet if one is available. This func-
tion can be used to efficiently inspect a received packet without actually copying it into a root
memory buffer. Once inspected, the buffer can be received normally (see

HDLCreceiveX ()), or dropped (see HDLCdropX ()).

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
bufptr Pointer to location in xmem of the received packet.
lenptr Pointer to the size of the received packet.

RETURN VALUE

1: The pointers bufptr and 1enptr have been set for the received packet.
0: No received packets available.

LIBRARY
HDLC PACKET.LIB

212 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCreceiveX

int HDLCreceiveX(char *rx buffer, int length); /* Where X is E or F */

DESCRIPTION

Copies areceived packet into rx_buf fer ifthere is one. Packets are received in the order they
arrive, even if multiple packets are currently stored in buffers.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
rx buffer Pointer to the buffer to copy a received packet into.
length Size of the buffer pointed to by rx_buffer.

RETURN VALUE

>0: Size of received packet.

-1: No packets are available to receive.

- 2: The buffer is not large enough for the received packet. In this case, the packet remains in
the receive buffer)

LIBRARY
HDLC PACKET.LIB

Dynamic C Functions rabbit.com 213

http://www.rabbit.com

HDLCsendX

int HDLCsendX(char * tx buffer, int length); /* Where X is E or F */

DESCRIPTION

Transmits a packet out serial port E or F in HDLC mode. The tx_buffer is read directly while
transmitting, therefore it cannot be altered until a subsequent call to HDL.CsendingX () re-
turns false, indicating that the driver is done with it.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
tx buffer A pointer to the packet to be sent. This buffer must not change while trans-
mitting (see above.)
length The size of the buffer (in bytes).

RETURN VALUE

1: Sending packet.
0: Cannot send, another packet is currently being transmitted.

LIBRARY
HDLC PACKET.LIB

214 rabbit.com Dynamic C Functions

http://www.rabbit.com

HDLCsendingX

int HDLCsendingX(void); /* Where X is E or F */

DESCRIPTION

Returns true if a packet is currently being transmitted. This function is intended for use with the
Rabbit 3000 and Rabbit 4000.

RETURN VALUE

1: Currently sending a packet.
0: Transmitter is idle.

LIBRARY
HDLC PACKET.LIB

hexstrtobyte

int hexstrtobyte (char far *p);

DESCRIPTION
Converts two hex characters (0-9A-Fa-f) to a byte.

RETURN VALUE

The byte (0-255) represented by the two hex characters or -1 on error (invalid character, string
less than 2 bytes).

EXAMPLES

hexstrtobyte("FF") returns 255
hexstrtobyte("0") returns -1 (error because < 2 characters)
hexstrtobyte("ABCDEF") returns 0xAB (ignores additional chars)

Dynamic C Functions rabbit.com 215

http://www.rabbit.com

hitwd

void hitwd(void);

DESCRIPTION

Hits the watchdog timer, postponing a hardware reset for 2 seconds. Unless the watchdog timer
is disabled, a program must call this function periodically, or the controller will automatically
reset itself. If the virtual driver is enabled (which it is by default), it will call hitwd in the back-
ground. The virtual driver also makes additional “virtual” watchdog timers available.

LIBRARY
VDRIVER.LIB

htoa

char * htoa(int wvalue, char * buf);

DESCRIPTION

Converts integer value to hexadecimal number and puts result into buf.

PARAMETERS
value 16-bit number to convert
buf Character string of converted number

RETURN VALUE

Pointer to end (null terminator) of string in buf.

LIBRARY
STDIO.LIB

SEE ALSO

itoa, utoa, ltoa

216 rabbit.com Dynamic C Functions

http://www.rabbit.com

IntervalMs

int IntervalMs(long ms);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous call.

Intended for use with waitfor.

PARAMETERS

ms The number of milliseconds to wait.

RETURN VALUE

0: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

IntervalSec

int IntervalSec(long sec);

DESCRIPTION

Similar to DelayMs but provides a periodic delay based on the time from the previous call.

Intended for use with waitfor.

PARAMETERS

sec The number of seconds to delay.

RETURN VALUE

0: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

217

http://www.rabbit.com

IntervalTick

int IntervalTick(long tick);

DESCRIPTION

Provides a periodic delay based on the time from the previous call. Intended for use with
waitfor. A tick is 1/1024 seconds.

PARAMETERS
tick The number of ticks to delay

RETURN VALUE

0: Not finished.
1: Delay has expired.

LIBRARY
COSTATE.LIB

ipres

void ipres(wvoid);

DESCRIPTION

Dynamic C expands this call inline. Restore previous interrupt priority by rotating the IP regis-
ter.

LIBRARY
UTIL.LIB

SEE ALSO

ipset

218 rabbit.com Dynamic C Functions

http://www.rabbit.com

ipset

void ipset(int priority);

DESCRIPTION

Dynamic C expands this call inline. Replaces current interrupt priority with another by rotating
the new priority into the IP register.

PARAMETERS
priority Interrupt priority range 0-3, lowest to highest priority.

LIBRARY
UTIL.LIB

SEE ALSO

ipres

isalnum

int isalnum(int c);

DESCRIPTION

Tests for an alphabetic or numeric character, (A to Z, ato z and 0 to 9).

PARAMETERS

c Character to test.

RETURN VALUE

0 if not an alphabetic or numeric character.
! 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isalpha, isdigit, ispunct

Dynamic C Functions rabbit.com 219

http://www.rabbit.com

isalpha

int isalpha(int ¢);

DESCRIPTION

Tests for an alphabetic character, (A to Z, or a to z).

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a alphabetic character.
! 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isalnum, isdigit, ispunct

iscntrl

int iscntrl(int c);

DESCRIPTION

Tests for a control character: 0 <= ¢ <= 31 or ¢ == 127.

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a control character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isalpha, isalnum, isdigit, ispunct

220 rabbit.com Dynamic C Functions

http://www.rabbit.com

isCoDone

int isCoDone(CoData * p);

DESCRIPTION

Determine if costatement is initialized and not running.

PARAMETERS

P Address of costatement

RETURN VALUE

1: Costatement is initialized and not running.
0: Otherwise.

LIBRARY
COSTATE.LIB

isCoRunning

int isCoRunning(CoData * p);

DESCRIPTION

Determine if costatement is stopped or running.
PARAMETERS

P Address of costatement.

RETURN VALUE

1 if costatement is running.
0 otherwise.

LIBRARY
COSTATE.LIB

Dynamic C Functions rabbit.com

221

http://www.rabbit.com

isdigit

int isdigit(int ¢);

DESCRIPTION
Tests for a decimal digit: 0 - 9

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a decimal digit.
! 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO
isxdigit, isalpha, isalpha

222 rabbit.com

Dynamic C Functions

http://www.rabbit.com

isgraph

int isgraph(int c);

DESCRIPTION

Tests for a printing character other than a space: 33 <= ¢ <= 126

PARAMETERS

c Character to test.

RETURN VALUE

0: c is not a printing character.
1 0: ¢ is a printing character.

LIBRARY
STRING.LIB

SEE ALSO

isprint, isalpha, isalnum, isdigit, ispunct

islower

int islower(int c);

DESCRIPTION

Tests for lower case character.

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a lower case character.
1 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

tolower, toupper, isupper

Dynamic C Functions rabbit.com 223

http://www.rabbit.com

isspace

int isspace(int c);

DESCRIPTION

Tests for a white space, character, tab, return, newline, vertical tab, form feed, and space: 9 <=

c<=13 and c == 32.
PARAMETERS
c Character to test.

RETURN VALUE

0 if not, ! 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

ispunct

isprint

int isprint(int c);

DESCRIPTION

Tests for printing character, including space: 32 <= c <= 126

PARAMETERS

c Character to test.

RETURN VALUE

0 if not a printing character, ! 0 otherwise.

LIBRARY
STRING.LIB

SEE ALSO

isdigit, isxdigit, isalpha, ispunct, isspace, isalnum,

isgraph

224 rabbit.com

Dynamic C Functions

http://www.rabbit.com

ispunct

int ispunct(int c);

DESCRIPTION

Tests for a punctuation character.

Character Decimal Code
space 32

I"#8% &' ()*F+,-./ 33<=c<=47
3<=>?@W 58 <=c <= 64
N~ 9l <=c <=96
{1}~ 123 <= c <= 126

PARAMETERS
c Character to test.

RETURN VALUE

0: Not a character.
1 0: Is a character.

LIBRARY

STRING.LIB

SEE ALSO

isspace

Dynamic C Functions rabbit.com 225

http://www.rabbit.com

isupper

int isupper(int c);

DESCRIPTION

Tests for upper case character.

PARAMETERS

c Character to test.

RETURN VALUE

0: Is not an uppercase character.
1 0: Is an uppercase character.

LIBRARY
STRING.LIB

SEE ALSO

tolower, toupper, islower

isxdigit

int isxdigit(int c);

DESCRIPTION
Tests for a hexadecimal digit: 0-9, A-F,a-f

PARAMETERS

c Character to test.

RETURN VALUE

0: Not a hexadecimal digit.
1 0: Is a hexadecimal digit.

LIBRARY
STRING.LIB

SEE ALSO
isdigit, isalpha, isalpha

226 rabbit.com

Dynamic C Functions

http://www.rabbit.com

itoa

char * itoa(int value, char * buf);

DESCRIPTION

Places up to a 5-digit character string, with a minus sign in the leftmost digit when appropriate,
at *buf. The string represents value, a signed number.

Leading zeros are suppressed in the character string, except for one zero digit when value =
0. The longest possible string is “-32768.”

PARAMETERS
value 16-bit signed number to convert
buf Character string of converted number in base 10

RETURN VALUE

Pointer to the end (null terminator) of the string in buf.

LIBRARY
STDIO.LIB

SEE ALSO

atoi, utoa, ltoa

Dynamic C Functions rabbit.com 227

http://www.rabbit.com

i2c_check ack

int i2c_check ack(void);

DESCRIPTION
Checks if slave pulls data low for ACK on clock pulse. Allows for clocks stretching on SCL
going high.

RETURN VALUE

0: ACK sent from slave.
1: NAK sent from slave.
- 1: Timeout occurred.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the I12C Bus with a Rabbit Microprocessor.

228 rabbit.com Dynamic C Functions

http://www.rabbit.com

i2c_init

void i2c¢_init(wvoid);
DESCRIPTION
Sets up the SCL and SDA port pins for open-drain output.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c¢c read char

int i2c_read char(char * ch);

DESCRIPTION

Reads 8 bits from the slave. Allows for clocks stretching on all SCL going high. This is not in
the protocol for I2C, but allows 1°C slaves to be implemented on slower devices.

PARAMETERS

ch A one character return buffer.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Functions rabbit.com 229

http://www.rabbit.com

i2c _send ack

int i2c_send ack(void);

DESCRIPTION

Sends ACK sequence to slave. ACK is usually sent after a successful transfer, where more bytes
are going to be read.

RETURN VALUE

0: Success.
- 1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c_send nak

int i2c_send nak(void);

DESCRIPTION

Sends NAK sequence to slave. NAK is often sent when the transfer is finished.

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

230 rabbit.com Dynamic C Functions

http://www.rabbit.com

i2c start tx

int i2c_start tx(void);

DESCRIPTION
Initiates I°C transmission by sending the start sequence, which is defined as a high to low tran-
sition on SDA while SCL is high. The point being that SDA is supposed to remain stable while
SCL is high. If it does not, then that indicates a start (S) or stop (P) condition. This function first
waits for possible clock stretching, which is when a bus peripheral holds SCK low.

RETURN VALUE
0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Functions rabbit.com

231

http://www.rabbit.com

i2c_startw tx

int i2c_startw tx(void);

DESCRIPTION

Initiates I°C transmission by sending the start sequence, which is defined as a high to low tran-
sition on SDA while SCL is high. The point being that SDA is supposed to remain stable while
SCL is high. If it does not, then that indicates a start (S) or stop (P) condition. This function first
waits for possible clock stretching, which is when a bus peripheral holds SCK low.

This function is essentially the same as i2c_start tx () withthe addition of a clock stretch
delay, which is 2000 “counts,” inserted after the start sequence. (A count is an iteration through
a loop.)

RETURN VALUE

0: Success.
-1: Clock stretching timeout.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

232 rabbit.com Dynamic C Functions

http://www.rabbit.com

i2c _stop tx

void i2c _stop tx(void);

DESCRIPTION

Sends the stop sequence to the slave, which is defined as bringing SDA high while SCL is high,
i.e., the clock goes high, then data goes high.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

i2c _write char

int i2c_write char(char 4);

DESCRIPTION

Sends 8 bits to slave. Checks if slave pulls data low for ACK on clock pulse. Allows for clocks
stretching on SCL going high.

PARAMETERS

d Character to send

RETURN VALUE

0: Success.
-1: Clock stretching timeout.
1: NAK sent from slave.

LIBRARY
12C.LIB

SEE ALSO
Technical Note 215, Using the 12C Bus with a Rabbit Microprocessor.

Dynamic C Functions rabbit.com 233

http://www.rabbit.com

kbhit

int kbhit(void);
DESCRIPTION
Detects keystrokes in the Dynamic C Stdio window.

RETURN VALUE

1 0 if a key has been pressed, 0 otherwise.

LIBRARY
UTIL.LIB

labs

long labs(long x);

DESCRIPTION

Computes the long integer absolute value of long integer x.

PARAMETERS

x Number to compute.

RETURN VALUE

x,1fx>0.
-x, otherwise.

LIBRARY
MATH.LIB
SEE ALSO
abs, fabs
234 rabbit.com Dynamic C Functions

http://www.rabbit.com

ldexp

float ldexp(float x, int n);

DESCRIPTION

Computes x* (2™).

PARAMETERS
X The value between 0.5 inclusive, and 1.0
n An integer

RETURN VALUE
The result of x* (27) .

LIBRARY
MATH.LIB

SEE ALSO

frexp, exp

log

float log(float x);
DESCRIPTION
Computes the logarithm, base e, of real £ 1oat value x.
PARAMETERS
x Float value

RETURN VALUE

The function returns —INF and signals a domain error when x < 0.

LIBRARY

MATH.LIB
SEE ALSO

exp, loglO

Dynamic C Functions rabbit.com 235

http://www.rabbit.com

log clean

int log clean(LogDest 14);

DESCRIPTION

Reset only the specified destination class and stream (encoded as a LogDest value). This is only
applicable to filesystem or XMEM destinations since they are locally persistent storage.
XMEM is automatically cleaned at start-up time, since it is not assumed to be non-volatile.

If this operation is not applicable, 0 is returned with no further action.

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETER

1d Destination class and stream. Use one of the constants LOG_DEST FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).

RETURN VALUE

0: success
-2: The stream is out-of-range for the class.

LIBRARY
log.lib

236 rabbit.com Dynamic C Functions

http://www.rabbit.com

log close

int log close(LogDestClass ldc);

DESCRIPTION

Close the specified class, enumerating all streams. If the destination class is already closed, re-
turns success.

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETER

ldc Destination class. Use one of the constants LOG_DEST FS2,
LOG DEST XMEM, LOG DEST UDP or LOG DEST ALL. The latter
case closes all open destinations.

RETURN VALUE

0: success

LIBRARY
log.lib

Dynamic C Functions rabbit.com

237

http://www.rabbit.com

log condition

int log condition(LogDest 1ldst);

DESCRIPTION

Return the state of the specified log destination. Destination classes or streams that are not con-
figured cause a -2 return code.

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETER

ldst Destination class and stream. Use one of the constants LOG_DEST_FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).

RETURN VALUE

0: Destination not open

1: destination OK

2: destination reached limit of its space quota
-1: error in destination.
-2: destination not configured

LIBRARY
log.lib

238 rabbit.com Dynamic C Functions

http://www.rabbit.com

log format

char * log format(LogEntry *le, char *buffer, int length, int pfx);

DESCRIPTION
Given the log entry returned by log_next() or log_prev(), format the entry as an ASCII string.
The string is constructed in Unix "syslog" format:
<%d>%.15s %.8s[%d]: Yos

where the substitutions are:

%d: facility/priority as decimal number (0-255)

%.15s: date/time as "Mon dd hh:mm:ss"

%s: process name - taken from LOG_UDP_PNAME(0) if defined, else "" (empty).
%d: process ID, but the entry serial number is used instead.

%s: the log entry data.

A null terminator is always added at buffer[length-1], or at the end of the string if it fits in the
buffer. If pfx is zero, then the above syslog prefix is not generated.

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETERS

le Log entry result from log_next/log_prev().

buffer Storage for result. Must be dimensioned at least 'length'.

length Length of buffer. For the maximum sized log entry, the buffer should be
158 bytes. The minimum length must be greater than or equal to 43 (if pfx
true) else 1. If a bad length is passed, the function returns without writing
to buffer.

pfx 0: message text only; do not generate syslog prefix.

1: prefix plus message text.
2: prefix only (up to ']', then null terminator).

RETURN VALUE
buffer address, or NULL if bad length passed.

LIBRARY
log.lib

SEE ALSO

log_next, log_prev

Dynamic C Functions rabbit.com 239

http://www.rabbit.com

log map

uint32 log map(LogFacPri 1fp);

DESCRIPTION

Return the log destination class and stream, for a given facility/priority code. The result is up to
four destinations packed into a longword. This function merely invokes the macro
LOG_MAP (), which may be overridden by the application, but defaults to just the filesystem.

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETER
1fp Facility/priority code. This is a single-byte code specified whenever any
log message is added. Facility is coded in the 5 MSBs, and priority in the
3 LSBs.

RETURN VALUE

Up to four destinations for a message of the specified facility and priority. Each byte in the re-
sulting long word represents a destination/stream. A zero byte indicates no destination. If the
result is all zeros, then a message of this type would be discarded.

LIBRARY
log.lib

240 rabbit.com Dynamic C Functions

http://www.rabbit.com

log next

int log next(LogDest ldst, LogEntry * le);

DESCRIPTION

Retrieve next log entry. Youmust call Log _seek () before calling this function the first time.
Retrieval of stored log messages proceeds, for example, as follows:

log seek(ldst, 0); // seek to start

log next (ldst, &L); // get lst entry

log next (ldst, &L); // get2nd entry

log prev(ldst, &L); // get 2nd entry again
log prev(ldst, &L); // get lstentry

log prev(ldst, &L); // returns -1

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETERS
ldst Destination class and stream. Use one of the constants LOG_DEST FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).
le Storage for result.

RETURN VALUE

non-negative: length of log entry data
-1: End of log or not open
-2: Not a readable log destination class

LIBRARY
log.lib

SEE ALSO
log_seek, log_prev

Dynamic C Functions rabbit.com

241

http://www.rabbit.com

log open

int log open(LogDestClass ldc, int clean);

DESCRIPTION

Open the specified logging destination class. If necessary, this enumerates all possible streams
within the class, opening them all (necessary only for FS2 class, since each file needs to be
opened). Class LOG DEST ALL opens all configured classes.

If clean is true, then the dest is set to empty log, if that makes sense for the class.

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETERS
ldc Destination class: LOG_DEST_ FS2, LOG_DEST_ UDP,
LOG _DEST XMEM or LOG_DEST ALL.
clean Boolean, should the destination be erased before using?

RETURN VALUE

0: success
-1: unknown LogDestClass value

LIBRARY
log.lib

242 rabbit.com Dynamic C Functions

http://www.rabbit.com

log prev

int log prev(LogDest ldst, LogEntry * le);

DESCRIPTION

Retrieve previous log entry. You must call log_seek () before calling this function the first
time. Retrieval of stored log messages proceeds, for example, as follows:

log seek(ldst, 1); // seekto end

log prev(ldst, &L); // get last entry

log prev(ldst, &L); // get2nd last entry

log next (1dst, &L); // get 2nd last entry again
log next (ldst, &L); // get last entry

log next (ldst, &L); // returns -1

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETERS
ldst Destination class and stream. Use one of the constants LOG_DEST FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).
le Storage for result.

RETURN VALUE

non-negative = length of log entry data
-1 = Start of log or not open
-2 =Not a readable log destination class

LIBRARY
log.lib

SEE ALSO

log_seek, log_next

Dynamic C Functions rabbit.com 243

http://www.rabbit.com

log put

int log put(LogFacPri ifp, uint8 fmt, const char *data, int length);

DESCRIPTION

Add a log entry. The specified facility/priority is mapped to the appropriate destination(s), as
configured by the macros. If the destination exists, then the log entry is added; otherwise, the
entry is quietly ignored. If a destination is unable to fit the log entry, and the destination is con-
figured as “circular,” then the first few entries may be deleted to make room. If this cannot be
done, or an unrecoverable error occurs, then -2 is returned. For non-circular destinations, -2 is
returned when it becomes full.

Since multiple log destinations can result from the given facility/priority, it can be difficult to
determine which actual destination caused an error. You can use the 1og_map () function to
determine the destinations, then check each destination's state using Log condition ().

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETERS
ifp Facility/priority code. Facility in 5 MSBs, priority in 3 LSBs.
fmt Format code. 0 for ascii string, others user-defined.
data Pointer to first byte of data to store.
length Length of data. Must be between 0 and 115 (LOG_MAX MESSAGE) inclu-

sive.

RETURN VALUE
0 = success
-1 = Message too long (over 115).
-2 = Unrecoverable error in destination. This return code usually means that the destination is
unusable and further entries for that destination will probably meet the same fate. This can also
mean that the destination has not been opened.

LIBRARY
log.lib

244 rabbit.com Dynamic C Functions

http://www.rabbit.com

log seek

int log seek(LogDest ldst, int);

DESCRIPTION

Position log for readback. The next call to Log next () will return the first entry in the log
(if whence=0), or log_prev () will return the last entry (if whence=1).

Note: Please see the comments at the top of Log. 11D for a description of the message
logging subsystem.

PARAMETERS
ldst Destination class and stream. Use one of the constants LOG_DEST FS2
or LOG_DEST XMEM, then OR in the stream number (0-63).
whence 0: first entry.

1: last entry.
other values reserved.

RETURN VALUE

0 = success.

-1 =Log empty.

-2 = Unrecoverable error or not open.

-3 = Not a seekable or configured log destination class.
-4 = invalid whence parameter.

LIBRARY
log.lib

SEE ALSO

log_next, log_prev

Dynamic C Functions rabbit.com 245

http://www.rabbit.com

logl0

float logl0(float x);

DESCRIPTION

Computes the base 10 logarithm of real £1oat value x.

PARAMETERS

x Value to compute

RETURN VALUE
The log base 10 of x.

The function returns —INF and signals a domain error when x < 0.

LIBRARY
MATH.LIB
SEE ALSO
log, exp

longjmp

void longjmp(jmp buf env, int wval);

DESCRIPTION

Restores the stack environment saved in array env []. See the description of set jmp () for
details of use.

Note: you cannot use longjmp () to move out of slice statements, costatements, or
cofunctions.

PARAMETERS
env Environment previously saved with set jmp () .

val Integer result of setjmp ().

LIBRARY
SYS.LIB

SEE ALSO
setjmp

246 rabbit.com Dynamic C Functions

http://www.rabbit.com

loophead

void loophead(void);

DESCRIPTION

This function should be called within the main loop in a program. It is necessary for proper sin-
gle-user cofunction abandonment handling.

When two costatements are requesting access to a single-user cofunction, the first request is
honored and the second request is held. When 1oophead () notices that the first caller is not
being called each time around the loop, it cancels the request, calls the abandonment code and
allows the second caller in.

See Samples\Cofunc\Cofaband. c for sample code showing abandonment handling.

LIBRARY
COFUNC.LIB

loopinit

void loopinit(void);

DESCRIPTION
This function should be called in the beginning of a program that uses single-user cofunctions.

It initializes internal data structures that are used by 1oophead ().

LIBRARY
COFUNC.LIB

Dynamic C Functions rabbit.com 247

http://www.rabbit.com

1sqgrt

unsigned int lsqgrt(unsigned long x);

DESCRIPTION

Computes the square root of x. Note that the return value is an unsigned int. The fractional por-
tion of the result is truncated.

PARAMETERS
x long int input for square root computation

RETURN VALUE

Square root of x (fractional portion truncated).

LIBRARY
MATH.LIB

ltoa

char * ltoa(long num, char * ibuf)

DESCRIPTION

This function outputs a signed long number to the character array.

PARAMETERS
num Signed long number.
ibuf Pointer to character array.

RETURN VALUE

Pointer to the same array passed in to hold the result.

LIBRARY
STDIO.LIB

SEE ALSO
ltoa

248 rabbit.com Dynamic C Functions

http://www.rabbit.com

ltoan

int ltoan(long num) ;

DESCRIPTION

This function returns the number of characters required to display a signed long number.
PARAMETERS
num 32-bit signed number.

RETURN VALUE

The number of characters to display signed long number.

LIBRARY
STDIO.LIB

SEE ALSO
ltoa

Dynamic C Functions rabbit.com 249

http://www.rabbit.com

lx format

int 1lx format(FSLXnum 1lxn, long wearlevel);

DESCRIPTION

Format a specified file system extent. This must not be called before calling £s_init (). All
files which have either or both metadata and data on this extent are deleted. Formatting can be
quite slow (depending on hardware) so it is best performed after power-up, if at all.

PARAMETERS
1xn Logical extent number (1.. £s.num_1x inclusive).
wearlevel Initial wearlevel value. This should be 1 if you have a new flash, and some

larger number if the flash is used. If you are reformatting a flash, you can
use 0 to use the old flash wear levels.

RETURN VALUE

0: Success.
1 0: Failure.

ERRNO VALUES

ENODEYV - no such extent number, or extent is reserved.

EBUSY - one or more files were open on this extent.

EIO - I/O error during format. If this occurs, retry the format operation. If it fails again, there
is probably a hardware error.

LIBRARY
FS2.1L1B

SEE ALSO

fs _init, fs_ format

250 rabbit.com Dynamic C Functions

http://www.rabbit.com

mbr CreatePartition

int mbr CreatePartition(mbr drive *drive, int pnum, char type):;

DESCRIPTION

Creates or modifies the partition specified. The partition being modified must not be mounted,
and should be released by filesystem use (that is, its £s_part pointer must be null). The new
partition values should be placed in the appropriate partition structure within the drive structure.

For example,

drive
drive
drive
drive
drive
drive
drive
drive

.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]
.part [partnum]

.bootflag = 0;
.starthead = 0xfe;
.startseccyl = 0;
.parttype = 0xda;
.endhead = 0xfe;

.endseccyl = 0;
.startsector = start;
.partsecsize = ((PART SZ) / 512) + 1;

mbr CreatePartition(&drive, partnum, O0xda) ;

For more information on the partition structure (mbr part)lookinpart defs.lib

The type parameter should match the type as it currently exists on the drive, unless this is un-
used. Some values for the t ype parameter are already in use. A list of known partition types is

at:

www.win.tue.nl/~aeb/partitions/partition types-1.html

Note: Starting with Dynamic C 9.01, this function BLOCKS!

PARAMETERS
drive
pnum
type

RETURN VALUE

0 for success

Pointer to a MBR drive structure

Partition number to be created or modified

Type that exists on the physical drive partition now

-EIO for Error trying to read drive/device or structures.

-EINVAL if drive structure, pnum or type is invalid.

- EPERM if the partition has not been enumerated or is currently mounted.
-EUNFORMAT if the drive is accessible, but not formatted.

-EBUSY if the device is busy. (Valid prior to Dynamic C 9.01)

LIBRARY
PART.LIB

Dynamic C Functions

rabbit.com

251

http://www.win.tue.nl/~aeb/partitions/partition_types-1.html
http://www.rabbit.com

mbr EnumDevice

mbr EnumDevice(mbr drvr *driver, mbr dev *dev, int devnum, int
(*checktype) ());

DESCRIPTION

This routine is called to learn about devices present on the driver passed in. The device will be
added to the linked list of enumerated devices. Partition information will be filled in from the
master boot record (MBR). Pointers to file system level partition information structures will be

set to NULL.
PARAMETERS
driver Pointer to a DOS contoller structure (setup during init of storage device de-
vicer.)
dev Pointer to a drive structure to be filled in.
devnum Physical device number of device on the driver.
checktype Routine that takes an unsigned char partition type and returns 1 if of sought

type and zero if not. Pass NULL for this parameter to bypass this check.

RETURN VALUE

0 for success

-EI0 for Error trying to read the device or structure.

-EINVAL if devnum invalid or does not exist.

-ENOMEM if memory for page buffer is not available.

-EUNFORMAT if the device is accessible, but not formatted. You can use it provided it is for-
matted/partitioned by either this library or another system.

-EBADPART if the partition table on the device is invalid

-ENOPART if the device does not have any sought partitions, If checktype parameter is NULL,
this test is bypassed. This code is superseded by any other error detected.

-EXIST if the device has already been enumerated.

-EBUSY if the device is busy.

LIBRARY
PART.LIB

252 rabbit.com Dynamic C Functions

http://www.rabbit.com

mbr FormatDevice

int mbr FormatDevice(mbr_ dev * dev);

DESCRIPTION

Creates or rewrites the Master Boot Record on the device given. The routine will only rewrite
the Boot Loader code if an MBR already exists on the device. The existing partition table will
be preserved. To modify an existing partition table use mbr_CreatePartion.

Note: This routine is NOT PROTECTED from power loss and can make existing parti-
tions inaccessible if interrupted.

Note: This function is BLOCKING.

PARAMETERS

dev Pointer to MBR device structure

RETURN VALUE

0 for success.

-EEXIST if the MBR exists, writing Boot Loader only
-EIO for Error trying to read the device or structure
-EINVAL if the Device structure is not valid

-ENOMEM if memory for page buffer is not available
-EPERM if drive has mounted or FS enumerated partition(s)

LIBRARY

PART.LIB

Dynamic C Functions rabbit.com 253

http://www.rabbit.com

mbr MountPartition

int mbr MountPartition(mbr drive * drive, int pnum);

DESCRIPTION

Marks the partition as mounted. It is the higher level codes responsibility to verify that the
fs_part pointer for a partition is not in use (null) as this would indicate that another system
is in the process of mounting this device.

PARAMETERS
drive Pointer to a drive structure
pnum Partition number to be mounted

RETURN VALUE

0 for success
-EINVAL if Drive or Partition structure or pnum is invalid.
- ENOPART if Partition does not exist on the device.

LIBRARY
PART.LIB

254 rabbit.com Dynamic C Functions

http://www.rabbit.com

mbr UnmountPartition

int mbr UnmountPartition(mbr drive * drive, int pnum);

DESCRIPTION

Marks the partition as unmounted. The partition must not have any user partition data attached
(through mounting at a higher level). If the £s_part pointer for the partition being unmounted
is not null, an EPERM error is returned.

PARAMETERS
drive Pointer to a drive structure containing the partition
pnum Partition number to be unmounted

RETURN VALUE

0 for success
-EINVAL if the Drive structure or pnum is invalid.
-ENOPART if the partition is enumerated at a higher level.

LIBRARY
PART.LIB

Dynamic C Functions rabbit.com

255

http://www.rabbit.com

mbr ValidatePartitions

int mbr ValidatePartitions(mbr drive * drive);

DESCRIPTION

This routine will validate the partition table contained in the drive structure passed. It will verify
that all partitions fit within the bounds of the drive and that no partitions overlap.

PARAMETERS

drive Pointer to a drive structure

RETURN VALUE

0 for success
-EINVAL if the partition table in the drive structure is invalid.

LIBRARY
PART.LIB

256 rabbit.com Dynamic C Functions

http://www.rabbit.com

md5 append

void md5 append(md5 state t * pms, char * data, int nbytes);

DESCRIPTION

This function will take a buffer and compute the MDS5 hash of its contents, combined with all pre-
vious data passed to it. This function can be called several times to generate the hash of a large
amount of data.

PARAMETERS
md5 append Pointer to the md5 state_t structure that was initialized by
md5_ init.
data Pointer to the data to be hashed.
nbytes Length of the data to be hashed.
LIBRARY
MD5.LIB

md5 init

void md5 init(md5 state t * pms);

DESCRIPTION

Initialize the MDS5 hash process. Initial values are generated for the structure, and this structure
will identify a particular transaction in all subsequent calls to the mdS5 library.

PARAMETER

pms Pointer to the md5 state t structure.

LIBRARY
MD5.LIB

Dynamic C Functions rabbit.com

257

http://www.rabbit.com

md5 finish

void md5 finish(md5 state t * pms, char digest[1l6]);

DESCRIPTION

Completes the hash of all the received data and generates the final hash value.

PARAMETERS
pms Pointer to the md5_state_t structure that was initialized by
md5 init.
digest The 16-byte array that the hash value will be written into.
LIBRARY
MDS5.LIB

258 rabbit.com Dynamic C Functions

http://www.rabbit.com

memchr

NEAR SYNTAX: void * n memchr(void * src, int ch, unsigned int n);
FAR SYNTAX: void far * f memchr(void far * src, int ch, size t n);

Note: By default, memchr () is definedto _n_ memchr ().

DESCRIPTION

Searches up to n characters at memory pointed to by src for character ch.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR_ STRING macro is de-
fined and all pointers are near pointers, append n__to the function name, e.g., n_strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
src Pointer to memory source.
ch Character to search for.
n Number of bytes to search.

RETURN VALUE

Pointer to first occurrence of ch if found within n characters. Otherwise returns null.

LIBRARY
STRING.LIB

SEE ALSO

strrchr, strstr

Dynamic C Functions rabbit.com 259

http://www.rabbit.com

memcmp

NEAR SYNTAX: int n memcmp(void *sl, void *s2, size t n);
FAR SYNTAX: int £ memcmp(void far *sl, void far *s2, size t n);

Note: By default, memcmp () is definedto n_ memcmp ().

DESCRIPTION

Performs unsigned character by character comparison of two memory blocks of length n.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl Pointer to block 1.
s2 Pointer to block 2.
n Maximum number of bytes to compare.

RETURN VALUE

<0: A character in strl is less than the corresponding character in str2.
0: strl isidentical to str2.
>0: A character in str1 is greater than the corresponding character in str2.

LIBRARY
STRING.LIB

SEE ALSO

strncmp

260 rabbit.com Dynamic C Functions

http://www.rabbit.com

memcpy

NEAR SYNTAX: void * n memcpy(void *dst, void *src, unsigned int n

)

FAR SYNTAX: void far * f memcpy(void far *dst, void far *src, size t
n);
Note: By default, memcpy () is definedto _n_memcpy () .

DESCRIPTION
Copies a block of bytes from one destination to another. Overlap is handled correctly.
For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.
Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE
Pointer to destination.

LIBRARY
STRING.LIB

SEE ALSO
memmove, memset

Dynamic C Functions rabbit.com 261

http://www.rabbit.com

mmemmove

NEAR SYNTAX: void * n memmove(void *dst, void *src, unsigned int n);
FAR SYNTAX: f memmove(void far * dst, void far * src, size t n);

Note: By default memmove () is definedto _n_memmove ().

DESCRIPTION

Copies a block of bytes from one destination to another. Overlap is handled correctly.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR_ STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n_strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to memory destination
src Pointer to memory source
n Number of characters to copy

RETURN VALUE

Pointer to destination.

LIBRARY
STRING.LIB

SEE ALSO

memcpy, memset

262 rabbit.com Dynamic C Functions

http://www.rabbit.com

memset

NEAR SYNTAX: void * n memset(void * dst, int chr, unsigned int n);
FAR SYNTAX: void far * f memset(void far * dst, int chr, size t n);

Note: By default, mnemset () is definedto _n memset ().

DESCRIPTION
Sets the first n bytes of a block of memory pointed to by dst to the character chr.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR_STRING macro is de-
fined and all pointers are near pointers, append n__ to the function name, e.g., n_strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Block of memory to set
chr Character that will be written to memory
n Amount of bytes to set

RETURN VALUE

dst: Pointer to block of memory.

LIBRARY
STRING.LIB

Dynamic C Functions rabbit.com 263

http://www.rabbit.com

mktime

unsigned long mktime(struct tm * timeptr);

DESCRIPTION

Converts the contents of structure pointed to by t imeptr into seconds.

struct tm {

char tm sec; // seconds 0-59
char tm min; // 0-59
char tm_hour; // 0-23
char tm mday; // 1-31
char tm mon; // 1-12
char tm year; // 80-147 (1980-2047)
char tm wday; // 0-6 0==sunday
}i
PARAMETERS
timeptr Pointer to tm structure

RETURN VALUE

Time in seconds since January 1, 1980

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, tm rd, tm wr

264 rabbit.com Dynamic C Functions

http://www.rabbit.com

mktm

unsigned int mktm

DESCRIPTION

Converts the seconds (t ime) to date and time and fills in the fields of the tm structure with the

result.

struct tm {
char tm_
char tm_
char tm_
char tm_
char tm_
char tm_
char tm_

Vi

PARAMETERS
timeptr

time

RETURN VALUE
0

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktime, tm rd,

(struct tm * timeptr, unsigned long time);

sec; // seconds 0-59

min; // 0-59

hour; // 0-23

mday; // 1-31

mon ; // 1-12

year; // 80-147 (1980-2047)
wday; // 0-6 0==sunday
Address to store date and time into structure:

Seconds since January 1, 1980.

tm_wr

Dynamic C Functions

rabbit.com

265

http://www.rabbit.com

modf

float modf(float x, int * n);

DESCRIPTION

Splits x into a fraction and integer, £ + n.

PARAMETERS
Floating-point integer

n An integer

RETURN VALUE
The integer part in *n and the fractional part satisfies |£| < 1.0

LIBRARY
MATH.LIB

SEE ALSO
fmod, ldexp

266 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf eraseBlock

int nf eraseBlock(nf device * dev, long page);

DESCRIPTION
Erases the block that contains the specified page on the specified NAND flash device. Check

for completion of the erase operation using either nf isBusyRBHW () or
nf isBusyStatus().

Normally, this function will not allow a bad block to be erased. However, when
NFLASH CANERASEBADBLOCKS is defined by the application, the bad block check is not
performed, and the application is allowed to erase any block, regardless of whether it is marked

good or bad.
PARAMETERS
dev Pointer to an initialized nf _device structure
page Page specifies the zero-based number of a NAND flash page in the block

to be erased, relative to the first “good” page.

RETURN VALUE

0: Success, or the first error result encountered
-1: NAND flash device is busy
-2: Block check time out error
-3: Page is in a bad block

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Dynamic C Functions rabbit.com

267

http://www.rabbit.com

nf getPageCount

long nf getPageCount(nf device * dev);

DESCRIPTION
Returns the number of program pages on the particular NAND flash device.

PARAMETERS

dev Pointerto annf device structure for an initialized NAND flash device.

RETURN VALUE
The number of program pages on the NAND flash device.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

268 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf getPageSize

long nf getPageSize(nf device * dev);

DESCRIPTION
Returns the size in bytes (excluding “spare” bytes) of each program page on the particular
NAND flash device.

PARAMETERS
dev Pointer to annf dewvice structure for an initialized NAND flash device.

RETURN VALUE

The number of data bytes in the NAND flash's program page, excluding the “spare” bytes used
for ECC storage, etc.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Dynamic C Functions rabbit.com

269

http://www.rabbit.com

nf initDevice

int nf initDevice(nf device * dev, int which);

DESCRIPTION

Initializes a particular NAND flash device. This function must be called before the particular
NAND flash device can be used. See nf _devtable [] in NFLASH. LIB for the user-updat-
able list of supported NAND flash devices. Note that xalloc is called to allocate buffer(s)
memory for each NAND flash device; a run time error will occur if the available xmem RAM
is insufficient.

There are two modes of operation for NAND flash devices: FAT and direct. If you are using the
FAT file system in the default configuration, i.e., the NAND flash has one FAT partition that
takes up the entire device, you donotneedtocallnf initDevice (). You only need to call
nf InitDriver (), which is the default device driver for the FAT file system on a NAND
flash device.

Configurations other than the default one require more work. For example, having two parti-
tions on the device, one a FAT partition and the other a non-FAT partition, require you to know
how to fit more than one partition on a device. A good example of how to do this is in the remote
application upload utility. The function dlm_initserialflash() in
/LIB/RCM3300/downloadmanager.lib is where to look for code details.The upload
utility is specifically for the RCM3300; however, even without the RCM3300, the utility is still
useful in detailing what is necessary to manage multiple partitions.

The second mode of operation for NAND flash devices is direct access. An application that di-
rectly accesses the NAND flash (using calls such as nf _readPage () and

nf writePage ())may define NFLASH USEERASEBLOCKSIZE to be either O (zero) or
1 (one) before NFLASH . LIB is #used, in order to set the NAND flash driver's main data pro-
gram unit size to either the devices' program page size of 512 bytes or to its erase block size of
16 KB.

If not defined by the application, NFLASH USEERASEBLOCKSIZE is set to the value 1 in
NFLASH . LIB; this mode should maximize the NAND flash devices' life.

NFLASH USEERASEBLOCKSIZE value 1 sets the driver up to program an erase block size
at a time. This mode may be best for applications with only a few files open in write mode with
larger blocks of data being written, and may be especially good at append operations. The trade
off is reduced flash erasures at the expense of chunkier overhead due to the necessity of per-
forming all 32 pages' ECC calculations for each programming unit written.

NFLASH USEERASEBLOCKSIZE value 0 sets the driver up to program a program page size
at a time. This mode may be best for applications with more than a few files open in write mode
with smaller blocks of data being written, and may be especially good at interleaved file writes
and/or random access write operations. The trade off is increased flash erasures with the benefit
of spread out overhead due to the necessity of performing only 1 page's ECC calculations per
programming unit written.

270 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf initDevice (cont’d)

PARAMETERS
dev Pointer to an nf _device structure that will be filled in. An initialized
nf device struct acts as a handle for the NAND flash device.
which Number of the NAND flash device to initialize. Currently supported de-

vice numbers are 0 for the soldered-on device or 1 for the socketed NAND
flash device.

RETURN VALUE

0: Success
-1: Unknown index or bad internal I/O port information
- 2: Error communicating with flash chip
-3: Unknown flash chip type

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Dynamic C Functions rabbit.com

27

http://www.rabbit.com

nf InitDriver

int nf InitDriver(mbr drvr * driver, void * device list);

DESCRIPTION
Initializes the NAND flash controller.

PARAMETERS

driver Empty mbr drvr structure. It must be initialized with this function
before it can be used with the FAT file system. More information on this
structure can be found in the Dynamic C Module document titled, “FAT
File System User’s Manual,” available on the Rabbit Semiconductor
website.

device list Ifnotnull, this is a pointer to the head of a linked list of nf _device
structures for NAND flash devices that have each already been initialized
by callingnf initDevice().
If device 1list isnull, then this function attempts to initialize all
NAND flash devices and provide a default linked list of nf device
structures in order from device number O on up. If the initialization of a
NAND flash device is unsuccessful, then its nf dewvice structure is not
entered into the linked list.

RETURN VALUE

0: Success
<0: Negative value of a FAT file system error code

LIBRARY
NFLASH FAT.LIB (This function was introduced in Dynamic C 9.01)

272 rabbit.com Dynamic C Functions

http://www.rabbit.com
http://www.rabbitsemiconductor.com/products/dc/docs.shtml

nf isBusyRBHW

int nf isBusyRBHW(nf device * dev);

DESCRIPTION

Returns 1 if the specified NAND flash device is busy. Uses the hardware Ready/Busy check
method, and can be used to determine the device's busy status even at the start of a read page
command. Note that this function briefly enforces the Ready/Busy input port bit, reads the pin
status, and then restores the port bit to its previous input/output state. There should be little or
no visible disturbance of the LED output which shares the NAND flash's Ready/Busy status
line.

PARAMETERS

dev Pointer to an initialized nf _device structure for the particular NAND
flash chip.

RETURN VALUE

1: Busy
0: Ready, (not currently transferring a page to be read, or erasing or writing a page)
-1: Error (unsupported Ready/Busy input port)

LIBRARY

NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

nf isBusyStatus

Dynamic C Functions rabbit.com

273

http://www.rabbit.com

nf isBusyStatus

int nf isBusyStatus(nf device * dev);

DESCRIPTION

Returns 1 if the specified NAND flash device is busy erasing or writing to a page. Uses the
software status check method, which can not (must not) be used to determine the device's busy
status at the start of a read page command.

PARAMETERS

dev Pointer to an initialized nf _device structure for the particular NAND
flash chip

RETURN VALUE

1: Busy
0: Ready (not currently erasing or writing a page)

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO
nf isBusyRBHW

274 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf readPage

int nf readPage(nf device * dev, long buffer, long page):;

DESCRIPTION

Reads data from the specified NAND flash device and page to the specified buffer in xmem.
Note that in the case of most error results at least some of the NAND flash page's content has
been read into the specified buffer. Although the buffer content must be considered unreliable,
it can sometimes be useful for inspecting page content in “bad” blocks.

PARAMETERS
dev Pointer to an initialized nf _device structure
buffer Physical address of the xmem buffer to read data into
page Specifies the zero-based number of a NAND flash page to be read, relative

to the first “good” page’s number.

RETURN VALUE

0: Success, or the first error result encountered
-1: NAND flash device is busy
- 2: Block check time out error
-3: Page is in a bad block
- 4: Page read time out error
- 5: Uncorrectable data or ECC error

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

Dynamic C Functions rabbit.com 275

http://www.rabbit.com

nf writePage

int nf writePage(nf device * dev, long buffer, long page):;

DESCRIPTION

Writes data to the specified NAND flash device and page from the specified buffer in xmem.
Check for completion of the write operation using nf isBusyRBHW () or
nf isBusyStatus().

PARAMETERS
dev Pointer to an initialized nf _device structure
buffer Physical address of the xmem data to be written
page Specifies the zero-based number of a NAND flash page to be written, rel-

ative to the first “good” page.

RETURN VALUE

0: Success, or the first error result encountered
-1: NAND flash device is busy
-2: Block check time out error
-3: Page is in a bad block
-4: XMEM/root memory transfer error
-5: Erase block or program page operation error.

LIBRARY
NFLASH.LIB (This function was introduced in Dynamic C 9.01)

SEE ALSO

CalculateECC256, ChkCorrectECC256, xCalculateECC256,
xChkCorrectECC256

276 rabbit.com Dynamic C Functions

http://www.rabbit.com

nf XD Detect

long nf XD Detect(int debounceMode);

DESCRIPTION
This function attempts to read the xD card ID and searches the internal device table for that ID
in detect mode 1. In detect mode O it just uses the xD card detect.

Assumes only one XD card present.

WARNING! - This should not be called to determine if it is safe to do write operations if there
is a chance a removable device might be pulled between calling it and the write. It is best used
to determine if a device is present to proceed with an automount after a device has been un-
mounted in SW and removed.

PARAMETERS

debounceMode 0 - no debouncing
1 - busy wait for debouncing interval
2 - for use if function to be called until debouncing interval is done, e.g.,

waitfor(rc = nf XD Detect(l) != -EAGAIN) ;
-EAGAIN will be returned until done.

RETURN VALUE

>0: The ID that was found on the device and in the table

-EBUSY: NAND flash device is busy

-ENODEV: No device found

-EAGAIN: if debounceMode equals 2, then not done debouncing, try again

LIBRARY
NFLASH FAT.LIB

Dynamic C Functions rabbit.com 277

http://www.rabbit.com

OpenInputCompressedFile

int OpenInputCompressedFile(ZFILE * ifp, long fn);

DESCRIPTION

Opens a file for input. This function sets up the LZ compression algorithm window associated
with the ZFILE file. The second parameter is the file handle (FS2) or address (#zimport) of
the input file to be opened. If the file is already compressed, after calling this function the file

can be decompressed by calling ReadCompressedFile (). If the file handle points to an

uncompressed FS2 file, after calling this function the resulting ZFILE file can be compressed

by calling CompressFile ().

The INPUT COMPRESSION BUFFERS macro controls the memory allocated by this func-
tion. It defaults to 1.

PARAMETERS
ifp ZFILE file descriptor
fn Address or handle of input file

RETURN VALUE

0: Failure
1: Success

LIBRARY
LZSS.LIB

SEE ALSO

CloseInputCompressedFile, CompressFile, ReadCompressedFile

278 rabbit.com Dynamic C Functions

http://www.rabbit.com

OpenOutputCompressedFile

int OpenOutputCompressedFile(ZFILE * ofp, int fn);

DESCRIPTION
Open an FS2 file for compressed output. This function sets up the LZ compression algorithm
window and tree associated with the ZFILE file. The second parameter is the file handle (FS2)
of the output file to be written to. Note that this MUST be an FS2 file handle, or the open will
fail.

The OUTPUT COMPRESSION BUFFERS macro must be defined as a positive non-zero
number if compression is being used.

PARAMETERS
ofp ZFILE file descriptor
fn FS2 handle of output file

RETURN VALUE
0: Failure
1: Success

LIBRARY
LZSS.LIB

SEE ALSO
CloseOutputCompressedFile

Dynamic C Functions rabbit.com

279

http://www.rabbit.com

OS ENTER CRITICAL

void OS ENTER CRITICAL(void);

DESCRIPTION

Enter a critical section. Interrupts will be disabled until OS_EXIT CRITICAL () is called.
Task switching is disabled. This function must be used with great care, since misuse can greatly
increase the latency of your application. Note that nesting OS ENTER CRITICAL () calls
will work correctly.

LIBRARY
UCOS2.LIB

OS EXIT CRITICAL

void OS_EXIT CRITICAL(void);

DESCRIPTION

Exit a critical section. If the corresponding previous OS ENTER CRITICAL () call disabled
interrupts (that is, interrupts were not already disabled), then interrupts will be enabled. Other-
wise, interrupts will remain disabled. Hence, nesting calls to OS_ ENTER CRITICAL () will
work correctly.

LIBRARY
UCOS2.LIB

280 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagAccept

0S_FLAGS OSFlagAccept(OS FLAG GRP * pgrp, OS FLAGS flags, INT8U
wait type, INT8U * err);

DESCRIPTION

This function is called to check the status of a combination of bits to be set or cleared in an event
flag group. Your application can check for ANY bit to be set/cleared or ALL bits to be
set/cleared.

This call does not block if the desired flags are not present.

PARAMETERS
pgorp Pointer to the desired event flag group.
flags Bit pattern indicating which bit(s) (i.e. flags) you wish to check. E.g., if
your application wants to wait for bits 0 and 1 then £1ags should be 0x03.
wait type Specifies whether you are checking for ALL bits to be set/cleared or ANY

of the bits to be set/cleared. You can specify the following argument:
+ 0S_FLAG WAIT CLR_ALL - You will check ALL bitsin flags
to be clear (0)
* OS_FLAG WAIT CLR_ANY - Youwill check ANY bit in flags
to be clear (0)
* OS_FLAG WAIT SET ALL - Youwill check ALL bitsin f1lags
to be set (1)

* 0S_FLAG _WAIT SET_ANY - You will check ANY bit in flags
to be set (1)

Note: Add OS_FLAG CONSUME if you want the event flag to be
consumed by the call. Example, to wait for any flag in a group AND
then clear the flags that are present, set the wait type parameter
to:

OS_FLAG WAIT SET ANY + OS_FLAG_ CONSUME

Dynamic C Functions rabbit.com 281

http://www.rabbit.com

OSFlagAccept (cont’d)

err Pointer to an error code. Possible values are:
* OS_NO_ERR - No error
* OS_ERR EVENT TYPE - Not pointing to an event flag group

* OS_FLAG_ERR WAIT TYPE -Proper wait type argument
not specified.

* OS _FLAG INVALID PGRP - null pointer passed instead of the
event flag group handle.

* OS_FLAG _ERR_NOT_ RDY - Flags not available.

RETURN VALUE
The state of the flags in the event flag group.

LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

282 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagCreate

OS FLAG GRP * OSFlagCreate(OS FLAGS flags, INT8U * err);

DESCRIPTION

This function is called to create an event flag group.

PARAMETERS
flags Contains the initial value to store in the event flag group.
err Pointer to an error code that will be returned to your application:

* OS_NO_ERR - The call was successful.

* OS_ERR CREATE ISR - Attempt made to create an Event Flag
from an ISR.

* OS_FLAG_GRP_DEPLETED - There are no more event flag groups

RETURN VALUE

A pointer to an event flag group or a null pointer if no more groups are available.

LIBRARY
OS _FLAG.C (Prior to DC 8:UCOS2.LIB)

Dynamic C Functions rabbit.com

283

http://www.rabbit.com

OSFlagDel

OS FLAG GRP * OSFlagDel(OS FLAG GRP * pgrp, INT8U opt, INT8U * err);

DESCRIPTION

This function deletes an event flag group and readies all tasks pending on the event flag group.
Note that:

* This function must be used with care. Tasks that would normally expect the presence of
the event flag group must check the return code of OSFlagAccept () and
OSFlagPend ().

* This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.
opt May be one of the following delete options:
* OS_DEL_NO_PEND - Deletes the event flag group only if no task
pending
* OS_DEL_ALWAYS - Deletes the event flag group even if tasks are
waiting. In this case, all the tasks pending will be readied..
err Pointer to an error code. May be one of the following values:

* OS_NO ERR - Success, the event flag group was deleted

* OS_ERR_DEL_ISR-Ifyou attempted to delete the event flag
group from an ISR

* OS_FLAG INVALID PGRP -Ifpgrp is a null pointer.

* OS_ERR_EVENT TYPE - You are not pointing to an event flag
group

* OS_ERR_EVENT TYPE - If you didn't pass a pointer to an event
flag group

* OS_ERR INVALID OPT - Invalid option was specified

* OS_ERR_TASK_ WAITING - One or more tasks were waiting on
the event flag group.

RETURN VALUE

pevent Error.
(OS_EVENT *)O0 Semaphore was successfully deleted.
LIBRARY

OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

284 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagPend

0S_FLAGS OSFlagPend(OS FLAG GRP * pgrp, OS FLAGS flags, INT8U
wait type, INT16U timeout, INT8U * err);

DESCRIPTION

This function is called to wait for a combination of bits to be set in an event flag group. Your
application can wait for ANY bit to be set or ALL bits to be set.

PARAMETERS
pgorp Pointer to the desired event flag group.

flags Bit pattern indicating which bit(s) (i.e. flags) you wish to wait for. E.g. if
your application wants to wait for bits 0 and 1 then £1ags should be 0x03.

wait type Specifies whether you want ALL bits to be set or ANY of the bits to be set.
You can specify the following argument:

* OS_FLAG WAIT CLR ALL - You will wait for ALL bits in mask
to be clear (0)

* OS_FLAG WAIT SET ALL - You will wait for ALL bits in mask
to be set (1)

* OS_FLAG WAIT CLR_ANY - You will wait for ANY bit inmask
to be clear (0)

+ 0S_FLAG WAIT SET ANY - You will wait for ANY bit inmask
to be set (1)

Note: Add OS_FLAG_CONSUME if you want the event flag to be
consumed by the call. E.g., to wait for any flag in a group AND then
clear the flags that are present, set the wait type parameter to:

OS_FLAG WAIT SET ANY + OS_FLAG CONSUME

timeout An optional timeout (in clock ticks) that your task will wait for the desired
bit combination. If you specify 0, however, your task will wait forever at
the specified event flag group or, until a message arrives.

Dynamic C Functions rabbit.com 285

http://www.rabbit.com

OSFlagPend (cont’d)

err Pointer to an error code. Possible values are:

OS_NO_ERR - The desired bits have been set within the specified time-
out.

OS_ERR_PEND ISR - Ifyou tried to PEND from an ISR.
0S_FLAG_INVALID PGRP - Ifpgrp is a null pointer.
OS_ERR_EVENT TYPE - You are not pointing to an event flag group
OS_TIMEOUT - The bit(s) have not been set in the specified time-out.
OS_FLAG_ERR WAIT TYPE - You didn't specify a proper
wait type argument.
RETURN VALUE
The new state of the flags in the event flag group when the task is resumed or, 0 if a timeout or
an error occurred.
LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

286 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSFlagPost

0S FLAGS OSFlagPost(OS FLAG GRP * pgrp, OS FLAGS flags, INT8U opt,
INT8U * err);

DESCRIPTION
This function is called to set or clear some bits in an event flag group. The bits to set or clear
are specified by a bitmask. Warnings:

* The execution time of this function depends on the number of tasks waiting on the event
flag group.

* The amount of time interrupts are DISABLED depends on the number of tasks waiting
on the event flag group.

PARAMETERS
pgorp Pointer to the desired event flag group.

flags If opt (see below) is OS_ FLAG SET, each bit thatis setin £1ags will
set the corresponding bit in the event flag group. E.g., to set bits 0, 4 and 5
you would set £1ags to:

0x31 (note, bit 0 is least significant bit)

If opt (see below) is OS_ FLAG CLR, each bit that is set in flags will
CLEAR the corresponding bit in the event flag group. E.g., to clear bits 0,
4 and 5 you would specify flags as:

0x31 (note, bit 0 is least significant bit)

opt Indicates whether the flags will be:
set (OS_FLAG_SET), or cleared (OS_FLAG_CLR)

err Pointer to an error code. Valid values are:

* OS_NO_ERR - The call was successful.

* OS_FLAG INVALID_ PGRP - null pointer passed.

* OS_ERR_EVENT TYPE - Not pointing to an event flag group
* OS_FLAG INVALID_ OPT - Invalid option specified.

RETURN VALUE

The new value of the event flags bits that are still set.

LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

Dynamic C Functions rabbit.com 287

http://www.rabbit.com

OSFlagQuery

0S FLAGS OSFlagQuery(OS FLAG GRP * pgrp, INT8U * err);

DESCRIPTION

This function is used to check the value of the event flag group.

PARAMETERS
pgrp Pointer to the desired event flag group.
err Pointer to an error code returned to the called:

* OS_NO_ERR - The call was successful
*+ OS_FLAG INVALID_ PGRP - null pointer passed.
* OS_ERR_EVENT TYPE - Not pointing to an event flag group

RETURN VALUE

The current value of the event flag group.

LIBRARY
OS_FLAG.C (Prior to DC 8:UCOS2.LIB)

288 rabbit.com Dynamic C Functions

http://www.rabbit.com

O0SInit

void 0SInit(void);

DESCRIPTION
Initializes pC/OS-II data; must be called before any other pC/OS-II functions are called.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreateExt, OSStart

OSMboxAccept

void * OSMboxAccept(OS EVENT * pevent);

DESCRIPTION

Checks the mailbox to see if a message is available. Unlike OSMboxPend (),
OSMboxAccept () does not suspend the calling task if a message is not available.
PARAMETERS

pevent Pointer to the mailbox’s event control block.

RETURN VALUE

= (void *)O This is the message in the mailbox if one is available. The mailbox
is cleared so the next time OSMboxAccept() is called, the mailbox
will be empty.

== (void *)O0 The mailbox is empty, or pevent is a null pointer, or you didn't

pass the proper event pointer.

LIBRARY
OS MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO
OSMboxCreate, OSMboxPend, OSMboxPost, OSMboxQuery

Dynamic C Functions rabbit.com 289

http://www.rabbit.com

OSMboxCreate

OS_EVENT * OSMboxCreate(void * msg);

DESCRIPTION
Creates a message mailbox if event control blocks are available.
PARAMETERS

msg Pointer to a message to put in the mailbox. If this value is set to the null
pointer (i.e., (void *) 0) then the mailbox will be considered empty.

RETURN VALUE

1= (void *)0 A pointer to the event control clock (OS EVENT) associated with
the created mailbox.

== (void *)O0 No event control blocks were available.

LIBRARY
OS MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO
OSMboxAccept, OSMboxPend, OSMboxPost, OSMboxQuery

290 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMboxDel

OS_EVENT * OSMboxDel(OS EVENT * pevent, INT8U opt, INT8U * err)

DESCRIPTION

This function deletes a mailbox and readies all tasks pending on the mailbox. Note that:

* This function must be used with care. Tasks that would normally expect the presence of
the mailbox MUST check the return code of 0SMboxPend ().

* OSMboxAccept () callers will not know that the intended mailbox has been deleted
unless they check pevent to see that it's a null pointer.

* This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the mailbox.

* Because ALL tasks pending on the mailbox will be readied, you MUST be careful in
applications where the mailbox is used for mutual exclusion because the resource(s) will
no longer be guarded by the mailbox.

PARAMETERS
pevent Pointer to the event control block associated with the desired mailbox.
opt May be one of the following delete options:
* OS_DEL_NO_PEND - Delete mailbox only if no task pending
* OS_DEL ALWAYS - Deletes the mailbox even if tasks are waiting.
In this case, all the tasks pending will be readied.
err Pointer to an error code that can contain one of the following values:

* OS_NO ERR - Call was successful; mailbox was deleted
* OS_ERR_DEL_ISR - Attempt to delete mailbox from ISR
* OS_ERR INVALID OPT - Invalid option was specified

* OS_ERR_TASK_WAITING - One or more tasks were waiting on
the mailbox

* OS_ERR EVENT TYPE - No pointer passed to a mailbox
* OS_ERR_PEVENT NULL - If pevent is a null pointer.

RETURN VALUE

1= (void *)O0 Is a pointer to the event control clock (OS_EVENT) associated with
the created mailbox
== (void *)0 If no event control blocks were available
LIBRARY
0S_MBOX.C

.
I

Dynamic C Functions rabbit.com

291

http://www.rabbit.com

OSMboxPend

void *OSMboxPend(OS_ EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

Waits for a message to be sent to a mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
timeout Allows task to resume execution if a message was not received by the num-
ber of clock ticks specified. Specifying 0 means the task is willing to wait
forever.
err Pointer to a variable for holding an error code. Possible error messages are:

* OS_NO_ERR: The call was successful and the task received a mes-
sage.

* OS_TIMEOUT: A message was not received within the specified
timeout

+ 0S_ERR_EVENT_TYPE: Invalid event type

* OS_ERR PEND ISR Ifthis function was called from an ISR and
the result would lead to a suspension.

* OS_ERR_PEVENT NULL: If pevent is a null pointer
RETURN VALUE
1= (void *)O0 A pointer to the message received

== (void *)0 No message was received, or pevent is a null pointer, or the prop-
er pointer to the event control block was not passed.

LIBRARY
OS MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO

OSMboxAccept, OSMboxCreate, OSMboxPost, OSMboxQuery

292 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMboxPost

INT8U OSMboxPost(OS EVENT * pevent, void * msg);

DESCRIPTION

Sends a message to the specified mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to message to be posted. A null pointer must not be sent.

RETURN VALUE
0S_NO_ ERR The call was successful and the message was sent.

0S MBOX FULL The mailbox already contains a message. Only one message at a
time can be sent and thus, the message MUST be consumed be-
fore another can be sent.

OS_ERR_EVENT TYPE Attempting to post to a non-mailbox.
O0S_ERR_PEVENT NULL If pevent is a null pointer
OS_ERR_POST NULL _ PTR Ifyou are attempting to post a null pointer

LIBRARY
OS _MBOX.C (Prior to DC 8:UCOS2.LIB)

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxQuery

Dynamic C Functions rabbit.com

293

http://www.rabbit.com

OSMboxPostOpt

INT8U OSMboxPostOpt(OS EVENT * pevent, void * msg, INT8U opt):;

DESCRIPTION

This function sends a message to a mailbox.

Note: Interrupts can be disabled for a long time if you do a “broadcast.” The interrupt
disable time is proportional to the number of tasks waiting on the mailbox.

PARAMETERS
pevent Pointer to mailbox’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.
opt Determines the type of POST performed:
* OS_POST OPT NONE - POST to a single waiting task (Identical
to OS_MboxPost ())
* OS_POST OPT_ BROADCAST - POST to ALL tasks that are wait-
ing on the mailbox
RETURN VALUE
0S_NO_ ERR The call was successful and the message was sent.
0S MBOX FULL The mailbox already contains a message. Only one message at a
time can be sent and thus, the message MUST be consumed be-
fore another can be sent.
OS_ERR_EVENT TYPE Attempting to post to a non-mailbox.
O0S_ERR_PEVENT NULL If pevent is a null pointer

OS_ERR_POST NULL _ PTR Ifyou are attempting to post a null pointer

LIBRARY
OS _MBOX.C (Prior to DC 8:UCOS2.LIB)

294 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMboxQuery

INT8U OSMboxQuery(OS_ EVENT * pevent, OS MBOX DATA * pdata):;

DESCRIPTION

Obtains information about a message mailbox.

PARAMETERS
pevent Pointer to message mailbox’s event control block.
pdata Pointer to a data structure for information about the message mailbox

RETURN VALUE
0S_NO_ ERR The call was successful and the message was sent.
OS _ERR_EVENT TYPE Attempting to obtain data from a non mailbox.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMboxAccept, OSMboxCreate, OSMboxPend, OSMboxPost

Dynamic C Functions rabbit.com

295

http://www.rabbit.com

OSMemCreate

OS_MEM * OSMemCreate(void * addr, INT32U nblks, INT32U blksize,
INT8U * err);

DESCRIPTION
Creates a fixed-sized memory partition that will be managed by pC/OS-II.

PARAMETERS
addr Pointer to starting address of the partition.
nblks Number of memory blocks to create in the partition.
blksize The size (in bytes) of the memory blocks.
err Pointer to variable containing an error message.

RETURN VALUE

Pointer to the created memory partition control block if one is available, null pointer otherwise.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemGet, OSMemPut, OSMemQuery

296 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMemGet

void * OSMemGet(OS MEM * pmem, INT8U * err);

DESCRIPTION

Gets a memory block from the specified partition.

PARAMETERS
pmem Pointer to partition’s memory control block
err Pointer to variable containing an error message

RETURN VALUE

Pointer to a memory block or a null pointer if an error condition is detected.

LIBRARY
UCOs2.LIB

SEE ALSO
OSMemCreate, OSMemPut, OSMemQuery

Dynamic C Functions rabbit.com 297

http://www.rabbit.com

OSMemPut

INT8U OSMemPut (OS MEM * pmem, void * pblk);

DESCRIPTION

Returns a memory block to a partition.

PARAMETERS
pmem Pointer to the partition’s memory control block.
pblk Pointer to the memory block being released.

RETURN VALUE
0S_NO_ ERR The memory block was inserted into the partition.

0S_MEM_ FULL If returning a memory block to an already FULL memory partition. (More
blocks were freed than allocated!)

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemGet, OSMemQuery

298 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMemQuery

INT8U OSMemQuery(OS MEM * pmem, OS MEM DATA * pdata);

DESCRIPTION

Determines the number of both free and used memory blocks in a memory partition.

PARAMETERS
pmem Pointer to partition’s memory control block.
pdata Pointer to structure for holding information about the partition.

RETURN VALUE

0S_NO_ ERR This function always returns no error.

LIBRARY
UCOS2.LIB

SEE ALSO
OSMemCreate, OSMemGet, OSMemPut

Dynamic C Functions rabbit.com

299

http://www.rabbit.com

OSMutexAccept

INT8U OSMutexAccept(OS EVENT * pevent, INT8U * err);

DESCRIPTION

This function checks the mutual exclusion semaphore to see if a resource is available. Unlike
OSMutexPend (), 0SMutexAccept () does not suspend the calling task if the resource is
not available or the event did not occur. This function cannot be called from an ISR because
mutual exclusion semaphores are intended to be used by tasks only.

PARAMETERS
pevent Pointer to the event control block.
err Pointer to an error code that will be returned to your application:

* OS_NO_ERR - if the call was successful.

* OS_ERR EVENT TYPE -if pevent isnot a pointer to a mutex
* OS_ERR_PEVENT NULL - pevent is a null pointer

* OS_ERR PEND ISR -ifyou called this function from an ISR

RETURN VALUE
1: Success, the resource is available and the mutual exclusion semaphore is acquired.

0: Error, either the resource is not available, or you didn't pass a pointer to a mutual exclusion
semaphore, or you called this function from an ISR.

LIBRARY
0S_MUTEX.C

300 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMutexCreate

OS_EVENT *OSMutexCreate(INT8U prio, INT8U * err);

DESCRIPTION

This function creates a mutual exclusion semaphore. Note that:

» The LEAST significant 8 bits of the OSEventCnt field of the mutex’s event control block
are used to hold the priority number of the task owning the mutex or OxFF if no task owns

the mutex.

* The MOST significant 8 bits of the OSEventCnt field of the mutex’s event control block
are used to hold the priority number to use to reduce priority inversion.

PARAMETERS

prio

err

RETURN VALUE

!= (void *)O0

== (Void *)0

LIBRARY
OS_MUTEX.C

The priority to use when accessing the mutual exclusion semaphore. In
other words, when the semaphore is acquired and a higher priority task at-
tempts to obtain the semaphore then the priority of the task owning the
semaphore is raised to this priority. It is assumed that you will specify a pri-
ority that is LOWER in value than ANY of the tasks competing for the mu-
tex.

Pointer to error code that will be returned to your application:

* OS_NO ERR - if the call was successful.

* OS_ERR_CREATE_ ISR - you attempted to create a mutex from an
ISR

* OS PRIO EXIST - atask at the priority inheritance priority al-
ready exist.
* OS_ERR PEVENT NULL - no more event control blocks available.

* OS_PRIO_INVALID -ifthe priority you specify is higher that the
maximum allowed (i.e. > 0S_LOWEST PRIO)

Pointer to the event control clock (OS _EVENT) associated with
the created mutex.

Error detected.

Dynamic C Functions

rabbit.com 301

http://www.rabbit.com

OSMutexDel

OS_EVENT *OSMutexDel(OS EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION

This function deletes a mutual exclusion semaphore and readies all tasks pending on it. Note

that:

* This function must be used with care. Tasks that would normally expect the presence of
the mutex MUST check the return code of OSMutexPend ().

* This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the mutex.

» Because ALL tasks pending on the mutex will be readied, you MUST be careful because
the resource(s) will no longer be guarded by the mutex.

PARAMETERS
pevent

opt

err

RETURN VALUE
pevent
(OS_EVENT *)0

LIBRARY
OS_MUTEX.C

Pointer to mutex’s event control block.

May be one of the following delete options:

L]

OS_DEL_NO_PEND - Delete mutex only if no task pending

OS_DEL ALWAYS - Deletes the mutex even if tasks are waiting. In
this case, all pending tasks will be readied.

Pointer to an error code that can contain one of the following values:

L]

OS_NO_ERR - The call was successful and the mutex was deleted
OS_ERR DEL ISR - Attempted to delete the mutex from an ISR
OS_ERR_INVALID OPT - An invalid option was specified

OS_ERR TASK WAITING - One or more tasks were waiting on
the mutex

OS_ERR_EVENT TYPE - If you didn't pass a pointer to a mutex
pointer.

On error.

Mutex was deleted.

302

rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMutexPend

void OSMutexPend(OS_EVENT *pevent, INT16U timeout, INT8U *err);

DESCRIPTION

This function waits for a mutual exclusion semaphore. Note that:

* The task that owns the Mutex MUST NOT pend on any other event while it owns the

mutex.

* You MUST NOT change the priority of the task that owns the mutex.

PARAMETERS
pevent

timeout

err

LIBRARY
0S_MUTEX.C

Pointer to mutex’s event control block.

Optional timeout period (in clock ticks). If non-zero, your task will wait for
the resource up to the amount of time specified by this argument. If you
specify 0, however, your task will wait forever at the specified mutex or,
until the resource becomes available.

Pointer to where an error message will be deposited. Possible error mes-
sages are:

OS_NO_ERR - The call was successful and your task owns the mutex
OS_TIMEOUT - The mutex was not available within the specified time.
OS_ERR_EVENT TYPE - If you didn't pass a pointer to a mutex
OS_ERR_PEVENT_ NULL - pevent is a null pointer

OS_ERR_PEND ISR -Ifyou called this function from an ISR and the re-
sult would lead to a suspension.

Dynamic C Functions

rabbit.com

303

http://www.rabbit.com

OSMutexPost

INT8U OSMutexPost(OS_ EVENT * pevent);
DESCRIPTION
This function signals a mutual exclusion semaphore.

PARAMETERS

pevent Pointer to mutex’s event control block.

RETURN VALUE

0S _NO ERR The call was successful and the mutex was signaled.
OS_ERR_EVENT TYPE If you didn't pass a pointer to a mutex

0S_ERR PEVENT NULL pevent is a null pointer

0S_ERR_POST_ ISR Attempted to post from an ISR (invalid for mutexes)

OS_ERR _NOT MUTEX OWNER The task that did the post is NOT the owner of the MUTEX.

LIBRARY
0S_MUTEX.C

304 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSMutexQuery

INT8U OSMutexQuery(OS EVENT * pevent, OS MUTEX DATA * pdata);

DESCRIPTION

This function obtains information about a mutex.

PARAMETERS
pevent Pointer to the event control block associated with the desired mutex.
pdata Pointer to a structure that will contain information about the mutex.

RETURN VALUE
0S_NO_ ERR The call was successful and the message was sent
O0S_ERR_QUERY ISR Function was called from an ISR
O0S _ERR PEVENT NULL pevent isa null pointer
OS_ERR_EVENT TYPE Attempting to obtain data from a non mutex.

LIBRARY
0S_MUTEX.C

Dynamic C Functions rabbit.com 305

http://www.rabbit.com

OSQAccept

void * OSQAccept(OS EVENT * pevent);

DESCRIPTION

Checks the queue to see if a message is available. Unlike 0SQPend (), with OSQAccept ()
the calling task is not suspended if a message is unavailable.

PARAMETERS
pevent Pointer to the message queue’s event control block.

RETURN VALUE

Pointer to message in the queue if one is available, null pointer otherwise.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQCreate, OSQFlush, OSQPend, OSQPost, OSQPostFront, 0OSQQuery

306 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQCreate

OS_EVENT * OSQCreate(void ** start, INT1l6U gsize);

DESCRIPTION

Creates a message queue if event control blocks are available.

PARAMETERS
start Pointer to the base address of the message queue storage area. The storage
area MUST be declared an array of pointers to void: void
*MessageStorage [gsize] .
gsize Number of elements in the storage area.
RETURN VALUE

Pointer to message queue’s event control block or null pointer if no event control blocks were
available.

LIBRARY
O0S_Q.C (Prior to DC 8:UC0S2.LIB)
SEE ALSO

OSQAccept, OSQFlush, OSQPend, OSQPost, OSQPostFront, 0OSQQuery

Dynamic C Functions rabbit.com 307

http://www.rabbit.com

O0SQDel

OS_EVENT * OSQDel(OS_ EVENT * pevent, INT8U opt, INT8U * err);

DESCRIPTION

Deletes a message queue and readies all tasks pending on the queue. Note that:

* This function must be used with care. Tasks that would normally expect the presence of
the queue MUST check the return code of 0SQPend ().

* OSQAccept () callers will not know that the intended queue has been deleted unless
they check pevent to see that it's a null pointer.

* This call can potentially disable interrupts for a long time. The interrupt disable time is
directly proportional to the number of tasks waiting on the queue.

* Because all tasks pending on the queue will be readied, you must be careful in
applications where the queue is used for mutual exclusion because the resource(s) will no
longer be guarded by the queue.

* Ifthe storage for the message queue was allocated dynamically (i.e., usingamalloc ()
type call) then your application must release the memory storage by call the counterpart
call of the dynamic allocation scheme used. If the queue storage was created statically
then, the storage can be reused.

PARAMETERS
pevent Pointer to the queue’s event control block.
opt May be one of the following delete options:
* OS_DEL_NO_PEND - Delete queue only if no task pending
* OS_DEL_ ALWAYS - Deletes the queue even if tasks are waiting. In
this case, all the tasks pending will be readied.
err Pointer to an error code that can contain one of the following:

* OS_NO_ERR - Call was successful and queue was deleted
* OS_ERR DEL ISR - Attempt to delete queue from an ISR
* OS_ERR_INVALID OPT - Invalid option was specified

* OS_ERR TASK WAITING - One or more tasks were waiting on
the queue

* OS_ERR_EVENT_ TYPE - You didn't pass a pointer to a queue
* OS_ERR_PEVENT NULL - If pevent is a null pointer.

RETURN VALUE

pevent Error
(0OS_EVENT *)0 The queue was successfully deleted.
LIBRARY

0S_Q.C (Prior to DC 8:UC0S2.LIB)

308 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQFlush

INT8U OSQFlush(OS EVENT * pevent);

DESCRIPTION
Flushes the contents of the message queue.
PARAMETERS

pevent Pointer to message queue’s event control block.

RETURN VALUE
0S NO ERR Success.
OS_ERR_EVENT TYPE A pointer to a queue was not passed.
O0S_ERR_PEVENT NULL Ifpevent is anull pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, OSQCreate, 0SQPend, OSQPost, OSQPostFront,

OSQQuery

Dynamic C Functions rabbit.com

309

http://www.rabbit.com

O0SQPend

void * OSQPend(OS_EVENT * pevent, INT16U timeout, INT8U * err);

DESCRIPTION

Waits for a message to be sent to a queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
timeout Allow task to resume execution if a message was not received by the num-
ber of clock ticks specified. Specifying 0 means the task is willing to wait
forever.
err Pointer to a variable for holding an error code.

RETURN VALUE

Pointer to a message or, if a timeout occurs, a null pointer.

LIBRARY
OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, OSQCreate, OSQFlush, OSQPost, OSQPostFront, 0SQQuery

310 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQPost

INT8U OSQPost(OS EVENT * pevent, void * msg);

DESCRIPTION

Sends a message to the specified queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE
0S_NO_ ERR The call was successful and the message was sent.
0S Q FULL The queue cannot accept any more messages because it is full.

OS_ERR_EVENT TYPE Ifa pointer to a queue not passed.

O0S_ERR_PEVENT NULL If pevent is a null pointer.
O0S_ERR_POST NULL PTR If attempting to post to a null pointer.
LIBRARY

OS_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, OSQCreate, OSQFlush, OSQPend, OSQPostFront, 0OSQQuery

Dynamic C Functions rabbit.com 311

http://www.rabbit.com

OSQPostFront

INT8U OSQPostFront(OS_ EVENT * pevent, void * msg);

DESCRIPTION

Sends a message to the specified queue, but unlike 0OSQPost (), the message is posted at the
front instead of the end of the queue. Using OSQPostFront () allows 'priority’ messages to

be sent.
PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.

RETURN VALUE

0S _NO ERR The call was successful and the message was sent.

0S Q FULL The queue cannot accept any more messages because it is full.
OS_ERR_EVENT TYPE A pointer to a queue was not passed.

O0S_ERR_PEVENT NULL If pevent is a null pointer.

OS_ERR_POST NULL PTR Attempting to post to a non mailbox.

LIBRARY
0S_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, 0OSQCreate, OSQFlush, 0OSQPend, 0OSQPost, 0OSQQuery

312 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSQPostOpt

INT8U OSQPostOpt(OS EVENT * pevent, void * msg, INT8U opt):;

DESCRIPTION

This function sends a message to a queue. This call has been added to reduce code size since it
can replace both 0SQPost () and OSQPostFront (). Also, this function adds the capabil-
ity to broadcast a message to all tasks waiting on the message queue.

Note: Interrupts can be disabled for a long time if you do a “broadcast.” In fact, the
interrupt disable time is proportional to the number of tasks waiting on the queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
msg Pointer to the message to send. A null pointer must not be sent.
opt Determines the type of POST performed:

* OS_POST OPT_NONE - POST to a single waiting task (Identical
to OSQPost ())
* OS_POST OPT_BROADCAST - POST to ALL tasks that are wait-
ing on the queue
* OS_POST OPT FRONT - POST as LIFO (Simulates
OSQPostFront ())
The last 2 flags may be combined:

+ 0S_POST OPT FRONT +0OS_POST OPT BROADCAST - is

identical to 0OSQPostFront () except that it will broadcast msg
to all waiting tasks.

RETURN VALUE

0S_NO_ ERR The call was successful and the message was sent.
0S_Q FULL The queue is full, cannot accept any more messages.
OS_ERR_EVENT TYPE A pointer to a queue was not passed.

0S_ERR PEVENT NULL If pevent is a null pointer.

O0S_ERR _POST NULL_ PTR Attempting to post a null pointer.

LIBRARY
O0S_Q.C (Prior to DC 8:UC0S2.LIB)

Dynamic C Functions rabbit.com 313

http://www.rabbit.com

OSQQuery

INT8U OSQQuery(OS EVENT * pevent, OS Q DATA * pdata);

DESCRIPTION

Obtains information about a message queue.

PARAMETERS
pevent Pointer to message queue’s event control block.
pdata Pointer to a data structure for message queue information.

RETURN VALUE
0S_NO_ ERR The call was successful and the message was sent
0S_ERR_EVENT TYPE Attempting to obtain data from a non queue.
O0S _ERR _PEVENT NULL Ifpevent isa null pointer.

LIBRARY
0S_Q.C (Prior to DC 8:UC0S2.LIB)

SEE ALSO
OSQAccept, OSQCreate, OSQFlush, 0OSQPend, 0OSQPost, OSQPos

tFront

314 rabbit.com

Dynamic C Functions

http://www.rabbit.com

0OSSchedLock

void 0SSchedLock(wvoid);

DESCRIPTION

Prevents task rescheduling. This allows an application to prevent context switches until it is
ready for them. There must be a matched call to 0SSchedUnlock () for every call to
0OSSchedLock ().

LIBRARY
UCOS2.LIB

SEE ALSO
O0SSchedUnlock

0SSchedUnlock

void 0SSchedUnlock(void);

DESCRIPTION

Allow task rescheduling. There must be a matched call to 0SSchedUnlock () forevery call
to OSSchedLock ().

LIBRARY
UCOS2.LIB

SEE ALSO
0OSSchedLock

Dynamic C Functions rabbit.com 315

http://www.rabbit.com

OSSemAccept

INT16U OSSemAccept(OS EVENT * pevent);

DESCRIPTION

This function checks the semaphore to see if a resource is available or if an event occurred. Un-
like 0OSSemPend (), 0OSSemAccept () does not suspend the calling task if the resource is
not available or the event did not occur.

PARAMETERS

pevent Pointer to the desired semaphore’s event control block

RETURN VALUE

Semaphore value:

If >0, semaphore value is decremented; value is returned before the decrement.

If 0, then either resource is unavailable, event did not occur, or null or invalid pointer was
passed to the function.

LIBRARY
UCOs2.LIB

SEE ALSO
OSSemCreate, OSSemPend, OSSemPost, OSSemQuery

316 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSSemCreate

OS_EVENT * OSSemCreate(INT16U cnt);

DESCRIPTION

Creates a semaphore.

PARAMETERS

cnt The initial value of the semaphore.

RETURN VALUE

Pointer to the event control block (OS EVENT) associated with the created semaphore, or null
if no event control block is available.

LIBRARY
UCOS2.LIB

SEE ALSO
OSSemAccept, OSSemPend, OSSemPost, OSSemQuery

OSSemPend

void OSSemPend(OS_EVENT * pevent, INT16U timeout, INT8U * err);

DESCRIPTION

Waits on a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
timeout Time in clock ticks to wait for the resource. If 0, the task will wait until the
resource becomes available or the event occurs.
err Pointer to error message.
LIBRARY
UCOS2.LIB
SEE ALSO

OSSemAccept, OSSemCreate, OSSemPost, 0OSSemQuery

Dynamic C Functions rabbit.com

317

http://www.rabbit.com

OSSemPost

INT8U OSSemPost(OS EVENT * pevent);

DESCRIPTION
This function signals a semaphore.
PARAMETERS

pevent Pointer to the desired semaphore’s event control block

RETURN VALUE
0S _NO ERR The call was successful and the semaphore was signaled.

0S_SEM OVF If the semaphore count exceeded its limit. In other words, you have
signalled the semaphore more often than you waited on it with either
OSSemAccept () orOSSemPend ().

OS_ERR_EVENT TYPE If a pointer to a semaphore not passed.
O0S_ERR_PEVENT NULL I[fpevent isanull pointer.

LIBRARY
UCOs2.LIB

SEE ALSO
OSSemAccept, OSSemCreate, OSSemPend, OSSemQuery

318 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSSemQuery

INT8U OSSemQuery(OS_EVENT * pevent, OS_SEM DATA * pdata);

DESCRIPTION

Obtains information about a semaphore.

PARAMETERS
pevent Pointer to the desired semaphore’s event control block
pdata Pointer to a data structure that will hold information about the semaphore.

RETURN VALUE
0S_NO_ ERR The call was successful and the message was sent.
0S_ERR_EVENT TYPE Attempting to obtain data from a non semaphore.
OS_ERR PEVENT NULL Ifthe pevent parameter is a null pointer.

LIBRARY
UCOSs2.LIB

SEE ALSO
OSSemAccept, OSSemCreate, OSSemPend, OSSemPost

Dynamic C Functions rabbit.com

319

http://www.rabbit.com

OSSetTickPerSec

INT16U OSSetTickPerSec(INT16U TicksPerSec):;

DESCRIPTION

Sets the amount of ticks per second (from 1 - 2048). Ticks per second defaults to 64. If this func-
tionis used, the #define OS_TICKS_ PER_SEC needs to be changed so that the time delay
functions work correctly. Since this function uses integer division, the actual ticks per second
may be slightly different that the desired ticks per second.

PARAMETERS

TicksPerSec Unsigned 16-bit integer.

RETURN VALUE

The actual ticks per second set, as an unsigned 16-bit integer.

LIBRARY
UCOS2.LIB

SEE ALSO
OSStart

OSStart

void OSStart(wvoid);

DESCRIPTION

Starts the multitasking process, allowing pC/OS-II to manage the tasks that have been created.
Before 0OSStart () iscalled, 0SInit () MUST have been called and at least one task
MUST have been created. This function calls 0SStartHighRdy which calls
0STaskSwHook and sets OSRunning to TRUE.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreate, OSTaskCreateExt

320 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSStatInit

void 0OSStatInit(void);
DESCRIPTION
Determines CPU usage.

LIBRARY
UCOS2.LIB

OSTaskChangePrio

INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

DESCRIPTION
Allows a task's priority to be changed dynamically. Note that the new priority MUST be avail-
able.
PARAMETERS
oldprio The priority level to change from.
newprio The priority level to change to.

RETURN VALUE
0S_NO_ ERR The call was successful.

OS_PRIO_INVALID The priority specified is higher that the maximum allowed (i.e. =
0S_LOWEST PRIO).

0S_PRIO_EXIST The new priority already exist

0S_PRIO_ERR There is no task with the specified OLD priority (i.e. the OLD task
does not exist).

LIBRARY
UCOS2.LIB

Dynamic C Functions rabbit.com 321

http://www.rabbit.com

OSTaskCreate

INT8U OSTaskCreate(void (*task) (), void *pdata, INT16U stk_size,
INT8U prio);

DESCRIPTION

Creates a task to be managed by pC/OS-II. Tasks can either be created prior to the start of mul-
titasking or by a running task. A task cannot be created by an ISR.

PARAMETERS
task Pointer to the task’s starting address.
pdata Pointer to a task’s initial parameters.
stk size Number of bytes of the stack.
prior The task’s unique priority number.

RETURN VALUE

0S_NO_ ERR The call was successful.

0S PRIO EXIT Task priority already exists (each task MUST have a unique priori-
ty).

0S_PRIO_INVALID The priority specified is higher than the maximum allowed (i.e. 2

0S_LOWEST_PRIO).

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskCreateExt

322 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskCreateExt

INT8U OSTaskCreateExt(void (* task) (), void * pdata, INT8U prio,
INT16U id, INT16U stk size, void * pext, INT1l6U opt);

DESCRIPTION

Creates a task to be managed by pC/OS-II. Tasks can either be created prior to the start of mul-
titasking or by a running task. A task cannot be created by an ISR. This function is similar to
OSTaskCreate () except that it allows additional information about a task to be specified.

PARAMETERS
task

pdata

prio

id

stk _size

pext

opt

RETURN VALUE
0S_NO_ERR

0S_PRIO EXIT

Pointer to task’s code.

Pointer to optional data area; used to pass parameters to the task at start of
execution.

The task’s unique priority number; the lower the number the higher the pri-
ority.

The task’s identification number (0...65535).

Size of the stack in number of elements. If OS_STK is set to INT8T,
stk size corresponds to the number of bytes available. If 0OS_STK is
setto INT16U, stk size contains the number of 16-bit entries avail-
able. Finally, if OS_STKissetto INT32U, stk_size contains the num-
ber of 32-bit entries available on the stack.

Pointer to a user-supplied Task Control Block (TCB) extension.

The lower 8 bits are reserved by wC/OS-II. The upper 8 bits control appli-
cation-specific options. Select an option by setting the corresponding
bit(s).

The call was successful.

Task priority already exists (each task MUST have a unique priori-
ty).

0S PRIO_ INVALID The priority specified is higher than the maximum allowed

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskCreate

(i.e.=20S_LOWEST PRIO).

Dynamic C Functions

rabbit.com

http://www.rabbit.com

OSTaskCreateHook

void OSTaskCreateHook(OS TCB * ptcb);

DESCRIPTION

Called by nC/OS-II whenever a task is created. This call-back function resides in
UCOS2.LIB and extends functionality during task creation by allowing additional informa-
tion to be passed to the kernel, anything associated with a task. This function can also be used
to trigger other hardware, such as an oscilloscope. Interrupts are disabled during this call, there-
fore, it is recommended that code be kept to a minimum.

PARAMETERS

ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskDelHook

324 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskDel

INT8U OSTaskDel(INT8U prio);

DESCRIPTION

Deletes a task. The calling task can delete itself by passing either its own priority number or
OS_PRIO_SELF ifit doesn’t know its priority number. The deleted task is returned to the dor-
mant state and can be re-activated by creating the deleted task again.

PARAMETERS

prio Task’s priority number.

RETURN VALUE

0S_NO_ ERR The call was successful.
OS_TASK_DEL_IDLE Attempting to delete nC/OS-II's idle task.
0S_PRIO_INVALID The priority specified is higher than the maximum allowed (i.e. >

OS_LOWEST PRIO)or,OS_PRIO_SELF not specified.
OS TASK DEL ERR The task to delete does not exist.
OS TASK DEL ISR Attempting to delete a task from an ISR.

LIBRARY
UCOSs2.LIB

SEE ALSO
OSTaskDelReq

Dynamic C Functions rabbit.com 325

http://www.rabbit.com

OSTaskDelHook

void OSTaskDelHook(OS TCB * ptcb);

DESCRIPTION

Called by nC/OS-II whenever a task is deleted. This call-back function resides in
UCOS2.LIB. Interrupts are disabled during this call, therefore, it is recommended that code
be kept to a minimum.

PARAMETERS

ptcb Pointer to TCB of task being deleted.

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskCreateHook

326 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskDelReq

INT8U OSTaskDelReqg(INT8U prio);

DESCRIPTION

Notifies a task to delete itself. A well-behaved task is deleted when it regains control of the CPU
by calling OSTaskDelReq (OSTaskDelReq) and monitoring the return value.

PARAMETERS

prio The priority of the task that is being asked to delete itself.
OS_PRIO_SELF is used when asking whether another task wants the
current task to be deleted.

RETURN VALUE
O0S _NO ERR The task exists and the request has been registered.

OS_TASK NOT EXIST The task has been deleted. This allows the caller to know whether
the request has been executed.

OS TASK DEL IDLE If requesting to delete uC/OS-II's idletask.

O0S _PRIO INVALID The priority specified is higher than the maximum allowed (i.e. >
0S_LOWEST PRIO)or,0S PRIO_SELF is not specified.

OS_TASK DEL_ REQ A task (possibly another task) requested that the running task be de-
leted.
LIBRARY
UCOS2.LIB
SEE ALSO
OSTaskDel

Dynamic C Functions rabbit.com 327

http://www.rabbit.com

OSTaskIdleHook

void OSTaskIdleHook(void);

DESCRIPTION

This function is called by the idle task. This hook has been added to allow you to do such things
as STOP the CPU to conserve power. Interrupts are enabled during this call.

LIBRARY
UCOs2.LIB

OSTaskQuery

INT8U OSTaskQuery(INT8U prio, OS TCB * pdata);

DESCRIPTION
Obtains a copy of the requested task's task control block (TCB).

PARAMETERS
prio Priority number of the task.
pdata Pointer to task’s TCB.

RETURN VALUE
0S_NO_ ERR The requested task is suspended.

OS_PRIO_INVALID The priority you specify is higher than the maximum allowed (i.e. >
0S_LOWEST PRIO)or,0S PRIO_SELF is not specified.

0S PRIO ERR The desired task has not been created.

LIBRARY
UCOS2.LIB

328 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskResume

INT8U OSTaskResume(INT8U prio);

DESCRIPTION
Resumes a suspended task. This is the only call that will remove an explicit task suspension.
PARAMETERS

prio The priority of the task to resume.

RETURN VALUE
0S _NO ERR The requested task is resumed.

O0S PRIO_ INVALID The priority specified is higher than the maximum allowed (i.e. >
0S_LOWEST_ PRIO).

OS_TASK NOT SUSPENDED The task to resume has not been suspended.

LIBRARY
UCOs2.LIB

SEE ALSO
OSTaskSuspend

OSTaskStatHook

void OSTaskStatHook(void);

DESCRIPTION

Called every second by nC/OS-II's statistics task. This function resides in UCOS2 . LIB and al-
lows an application to add functionality to the statistics task.

LIBRARY
UCOS2.LIB

Dynamic C Functions rabbit.com 329

http://www.rabbit.com

OSTaskStkChk

INT8U OSTaskStkChk(INT8U prio, OS STK DATA * pdata);

DESCRIPTION
Check the amount of free memory on the stack of the specified task.

PARAMETERS
prio The task’s priority.
pdata Pointer to a data structure of type OS_STK_DATA.

RETURN VALUE
0S_NO_ ERR The call was successful.

OS_PRIO_INVALID The priority you specify is higher than the maximum allowed (i.e. >
0S_LOWEST PRIO)or,0S PRIO SELF not specified.

OS TASK NOT EXIST The desired task has not been created.
0S_TASK_OPT_ERR IfOS_TASK OPT STK CHK was NOT specified when the task

was created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTaskCreateExt

330 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTaskSuspend

INT8U OSTaskSuspend(INT8U prio);

DESCRIPTION

Suspends a task. The task can be the calling task if the priority passed to 0STaskSuspend ()
is the priority of the calling task or OS_PRIO_SELF. This function should be used with great
care. If a task is suspended that is waiting for an event (i.e., a message, a semaphore, a queue...)

the task will be prevented from running when the event arrives.

PARAMETERS

prio The priority of the task to suspend.

RETURN VALUE
0S_NO_ERR
0S_TASK_SUS_IDLE

OS PRIO INVALID

0S_TASK_SUS_PRIO

LIBRARY
UCOS2.LIB

SEE ALSO

OSTaskResume

The requested task is suspended.
Attempting to suspend the idle task (not allowed).

The priority specified is higher than the maximum allowed (i.e. >
0S_LOWEST PRIO)or,0S_PRIO SELF is not specified.

The task to suspend does not exist.

Dynamic C Functions

rabbit.com

331

http://www.rabbit.com

OSTaskSwHook

void OSTaskSwHook (void);

DESCRIPTION

Called whenever a context switch happens. The task control block (TCB) for the task that is
ready to run is accessed via the global variable OSTCBHighRdy, and the TCB for the task that
is being switched out is accessed via the global variable OSTCBCur.

LIBRARY
UCOS2.LIB

OSTCBInitHook

void OSTCBInitHook(OS_TCB * ptcb);

DESCRIPTION

This function is called by OSTCBInit () after setting up most of the task control block (TCB).
Interrupts may or may not be enabled during this call.

PARAMETER

ptcb Pointer to the TCB of the task being created.

LIBRARY
UCOs2.LIB

332 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTimeDly

void OSTimeDly(INT16U ticks);

DESCRIPTION

Delays execution of the task for the specified number of clock ticks. No delay will result if
ticks is 0. If ticks is >0, then a context switch will result.

PARAMETERS
ticks Number of clock ticks to delay the task.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDlyHMSM, OSTimeDlyResume, OSTimeDlySec

Dynamic C Functions rabbit.com 333

http://www.rabbit.com

OSTimeDlyHMSM

INT8U OSTimeDlyHMSM(INT8U hours, INT8U minutes, INT8U seconds,
INT16U milli);

DESCRIPTION

Delays execution of the task until specified amount of time expires. This call allows the delay
to be specified in hours, minutes, seconds and milliseconds instead of ticks. The resolution on
the milliseconds depends on the tick rate. For example, a 10 ms delay is not possible if the ticker
interrupts every 100 ms. In this case, the delay would be set to 0. The actual delay is rounded to
the nearest tick.

PARAMETERS
hours Number of hours that the task will be delayed (max. is 255)
minutes Number of minutes (max. 59)
seconds Number of seconds (max. 59)
milli Number of milliseconds (max. 999)

RETURN VALUE
0S_NO_ ERR Execution delay of task was successful
OS_TIME INVALID MINUTES Minutes parameter out of range
OS TIME INVALID SECONDS Seconds parameter out of range
OS_TIME INVALID MS Milliseconds parameter out of range
OS_TIME ZERO DLY

LIBRARY
OS TIME.C (Prior to DC 8:ucos2.1lib)

SEE ALSO
OSTimeDly, OSTimeDlyResume, OSTimeDlySec

334 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTimeDlyResume

INT8U OSTimeDlyResume(INT8U prio);

DESCRIPTION

Resumes a task that has been delayed through a call to either OSTimeDly () or
0STimeD1yHMSM () . Note that this function MUST NOT be called to resume a task that is
waiting for an event with timeout. This situation would make the task look like a timeout oc-
curred (unless this is the desired effect). Also, a task cannot be resumed that has called
0STimeD1yHMSM () with a combined time that exceeds 65535 clock ticks. In other words, if
the clock tick runs at 100 Hz then, a delayed task will not be able to be resumed that called
OSTimeDl1yHMSM (0, 10, 55, 350) or higher.

PARAMETERS

prio Priority of the task to resume.

RETURN VALUE
O0S _NO ERR Task has been resumed.

O0S PRIO_ INVALID The priority you specify is higher than the maximum allowed (i.e. >
0S_LOWEST_ PRIO).

OS TIME NOT DLY Task is not waiting for time to expire.
OS_TASK NOT EXIST The desired task has not been created.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeDly, OSTimeDlyHMSM, OSTimeDlySec

Dynamic C Functions rabbit.com 335

http://www.rabbit.com

OSTimeDlySec

INT8U OSTimeDlySec(INT16U seconds);

DESCRIPTION

Delays execution of the task until seconds expires. This is a low-overhead version of
0STimeD1yHMSM for seconds only.

PARAMETERS

seconds The number of seconds to delay.

RETURN VALUE

0S _NO ERR The call was successful.

OS TIME ZERO DLY A delay of zero seconds was requested.
LIBRARY

UCOS2.LIB
SEE ALSO

OSTimeDly, OSTimeDlyHMSM, OSTimeDlyResume

336 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSTimeGet

INT32U OSTimeGet(void);

DESCRIPTION

Obtain the current value of the 32-bit counter that keeps track of the number of clock ticks.

RETURN VALUE

The current value of OSTime.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeSet

OSTimeSet

void OSTimeSet (INT32U ticks):;

DESCRIPTION
Sets the 32-bit counter that keeps track of the number of clock ticks.

PARAMETERS

ticks The value to set OSTime to.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeGet

Dynamic C Functions rabbit.com 337

http://www.rabbit.com

OSTimeTick

void OSTimeTick(void);

DESCRIPTION

This function takes care of the processing necessary at the occurrence of each system tick. This
function is called from the BIOS timer interrupt ISR, but can also be called from a high priority
task. The user definable 0STimeTickHook () is called from this function and allows for
extra application specific processing to be performed at each tick. Since

0STimeTickHook () is called during an interrupt, it should perform minimal processing as
it will directly affect interrupt latency.

LIBRARY
UCOS2.LIB

SEE ALSO
OSTimeTickHook

OSTimeTickHook

void OSTimeTickHook(void);

DESCRIPTION

This function, as included with Dynamic C, is a stub that does nothing except return. It is called
every clock tick. Code in this function should be kept to a minimum as it will directly affect
interrupt latency. This function must preserve any registers it uses other than the ones that are
preserved at the beginning of the periodic interrupt (periodic isr in VDRIVER.LIB),
and therefore should be written in assembly. At the time of this writing, the registers saved by
periodic_ isr are: AFIPHL,DE and IX.

LIBRARY
UCOSs2.LIB

SEE ALSO
OSTimeTick

338 rabbit.com Dynamic C Functions

http://www.rabbit.com

OSVersion

INT16U OSVersion(void);

DESCRIPTION

Returns the version number of pC/OS-II. The returned value corresponds to pC/OS-II's version
number multiplied by 100; i.e., version 2.00 would be returned as 200.

RETURN VALUE
Version number multiplied by 100.

LIBRARY
UCOs2.LIB

outchrs

char outchrs(char ¢, int n, int (*putc) ());

DESCRIPTION

Use putc to output n times the character c.

PARAMETERS
c Character to output
n Number of times to output
putc Routine to output one character. The function pointed to by putc should

take a character argument.

RETURN VALUE

The character in parameter c.

LIBRARY
STDIO.LIB

SEE ALSO

outstr

Dynamic C Functions rabbit.com 339

http://www.rabbit.com

outstr

char * outstr(char * string, int (*putc) ());

DESCRIPTION
Output the string pointed to by st ring via calls to putc. putc should take a one-character
parameter.
PARAMETERS
string String to output
putc Routine to output one character. The function pointed to by putc should

take a character argument.

RETURN VALUE

Pointer to null at end of string.

LIBRARY
STDIO.LIB

SEE ALSO

outchrs

340 rabbit.com Dynamic C Functions

http://www.rabbit.com

paddr

unsigned long paddr(void * pointer);

DESCRIPTION

Converts a logical pointer into its physical address. This function is compatible with both shared
and separate 1&D space compile modes. Use caution when converting a pointer in the xmem
window, i.e., in the range 0xE000 to OxFFFF, as this function will return the physical address

based on the XPC on entry.
PARAMETERS
pointer The pointer to convert.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM.LIB

SEE ALSO
paddrDS, paddrSS

Dynamic C Functions rabbit.com 341

http://www.rabbit.com

paddrDS

unsigned long paddrDS(void * pointer);

DESCRIPTION

Converts a "Data Segment" logical pointer into its physical address. This function assumes the
pointer points to static (excluding blbram) data, which eliminates some runtime testing as
compared with the more general function, paddr ().

paddrDs () will generate incorrect results if used for:

* addresses in the root code (that is, program code or constants)
* bbram (only available in fast RAM compile mode)

« stack (that is, auto variables)

¢ Xmem segments

PARAMETERS

pointer Logical static (non-bbram) data pointer to convert.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM.LIB

SEE ALSO
paddr, paddrSS

342 rabbit.com Dynamic C Functions

http://www.rabbit.com

paddrss

unsigned long paddrSS(void * pointer);

DESCRIPTION

Convert a logical pointer into its physical address. This function assumes the pointer points to
data in the stack segment, which eliminates some runtime testing compared with the more gen-
eral function, paddr (). The stack segment is used to store auto data items. This function
will generate incorrect results if used for addresses in the root code (i.e. program code or con-
stants), data (i.e. statically allocated variables), or xmem segments.

PARAMETERS
pointer The pointer to convert, pointing to stack (auto) data.

RETURN VALUE
The physical address of the pointer.

LIBRARY
XMEM.LIB

SEE ALSO
paddr, paddrDS

Dynamic C Functions rabbit.com

343

http://www.rabbit.com

palloc

void * palloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pfree () to avoid memory leaks.

Assembler code can call palloc fast () instead.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: No free elements available
Otherwise, pointer to an element

LIBRARY
POOL.LIB

SEE ALSO

pool init, pcalloc, pfree, phwm, pavail, palloc fast, pxalloc,
pool link

344 rabbit.com Dynamic C Functions

http://www.rabbit.com

palloc fast

xmem void * palloc_fast(Pool t * p);

DESCRIPTION

Return next available free element from the given pool, which must be a root pool.
This is an assembler-only version of palloc ().
%* Do _not_ call this function from C. *

palloc_fast does not perform any IPSET protection, parameter validation, or update the
high-water mark. palloc_fast is aroot function. The parameter must be passed in IX, and
the returned element address is in HL.

REGISTERS

Parameter in IX
Trashes F, BC, DE
Return value in HL, carry flag.

EXAMPLE

1d ix,my pool

lcall palloc fast

jr c,.no_free

; HL points to element

PARAMETERS

P Pool handle structure, as previously passed to pool init (). Pass this
in IX.

RETURN VALUE
C flag set: no free elements were available.
C flag clear (NC): HL points to an element.

If the pool is not linked, your application can use this element provided it does not write more
than p->elsize bytes to it (this was the elsize parameter passed to pool init ()).If
the pool is linked, you can write p- >elsize-4 bytes to it.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pfree fast, pavail fast, palloc

Dynamic C Functions rabbit.com 345

http://www.rabbit.com

pavail

word pavail(Pool t * p);

DESCRIPTION

Return the number of elements that are currently available for allocation.

PARAMETERS

P Pool handle structure, as previously passed to pool init ()or
pool xinit ().

RETURN VALUE

Number of elements available for allocation.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, phwm, pnel

346 rabbit.com Dynamic C Functions

http://www.rabbit.com

pavail fast

xmem word pavail fast(Pool t * p);

DESCRIPTION
Return the number of elements that are currently available for allocation.
This is an assembler-only version of pavail ().

%* Do _not_ call this function from C. *

REGISTERS

Parameter in IX
Trashes F, DE
Return value in HL, Z flag

EXAMPLE

1d ix,my pool
lcall pavail fast
; HL contains number of available elements

PARAMETERS

P Pool handle structure, as previously passed to pool init ()or
pool xinit (). This must be provided in the IX register.
RETURN VALUE
Number of elements available for allocation. The return value is placed in HL. In addition, the

'Z' flag is set if there are no free elements.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, phwm, pnel

Dynamic C Functions rabbit.com 347

http://www.rabbit.com

pcalloc

void * pcalloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pfree () to avoid memory leaks.

The element is set to all zero bytes before returning.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: No free elements were available

Otherwise, pointer to an element. If the pool is not linked, your application must not write more
than p- >elsgize bytes to the element (this was the elsize parameter passed to

pool init ()). The application can write up to (p->elsize-4) bytes to the element if the
pool is linked. (An element in root memory has 4 bytes of overhead when the pool is linked.)

LIBRARY
POOL.LIB

SEE ALSO

pool init, palloc, pfree, phwm, pavail

348 rabbit.com Dynamic C Functions

http://www.rabbit.com

pfirst

void * pfirst(Pool t * p);

DESCRIPTION

Get the first allocated element in a root pool. The pool MUST be set to being a linked pool us-
ing:

pool link(p, <non-zero>)
Otherwise, the result is undefined.
PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

Null: There are no allocated elements
Otherwise, pointer to first (i.e., oldest) allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, plast, pnext, pprev

Dynamic C Functions rabbit.com 349

http://www.rabbit.com

pfirst fast

xmem void * pfirst fast(Pool t * p);

DESCRIPTION

Get the first allocated element in a root pool. The pool MUST be set to being a linked pool by
using:

pool link(p, <non-zero>) ;
Otherwise the results are undefined.
This is an assembler-only version of pfirst ().

*** Do _not_ call this function from C. ***

REGISTERS

Parameter in X
Trashes F, DE
Return value in HL, carry flag

EXAMPLE
1d ix,my pool
lcall pfirst fast
jr ¢, .no _elems
; HL points to first element
PARAMETERS
P Pool handle structure, as previously passed to pool init (). Pass this

in the IX register.

RETURN VALUE

C flag set, HL=0: There are no allocated elements.
C flag clear (NC): HL points to first element.

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool 1link, pfirst, pnext fast

350 rabbit.com Dynamic C Functions

http://www.rabbit.com

pfree

void pfree(Pool t * p, void * e);

DESCRIPTION

Free an element that was obtained via palloc (). Note: if you free an element that was not
allocated from this pool, or was already free, or was outside the pool, then your application will
crash! You can detect most of these programming errors by defining the following symbols be-
fore #use pool.lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS
P Pool handle structure, as previously passed to palloc ().

e Element to free, which was returned from palloc ().

RETURN VALUE

None

LIBRARY
POOL.LIB

SEE ALSO

pool init, palloc, pcalloc, phwm, pavail

Dynamic C Functions rabbit.com 351

http://www.rabbit.com

pfree fast

xmem void pfree fast(Pool t * p, void * e);

DESCRIPTION

Free an element that was previously obtained via palloc ().

This is an assembler-only version of pfree ().

**%* Do _not_ call this function from C. **#*

pfree fast doesnotperform any IPSET protection or parameter validation. pfree fast
is a xmem function. The parameters must be passed in machine registers.

REGISTERS

Parameters in IX, DE respectively
Trashes BC, DE, HL

EXAMPLE

1d ix,my pool
1d de, (element addr)
lcall pfree fast

PARAMETERS

p

RETURN VALUE

None

LIBRARY
POOL.LIB

SEE ALSO

pool init,

Pool handle structure, as previously passed to pool alloc ()or
palloc fast. This must be in the IX register.

Element to free, which was returned from palloc (). This must be in the
DE register.

palloc fast, pavail fast, pxfree fast

352

rabbit.com Dynamic C Functions

http://www.rabbit.com

word phwm(Pool t * p);

DESCRIPTION

Return the largest number of elements ever simultaneously allocated from the given pool, i.e.,
the pool high water mark.

You can use this function to help size a pool, since it may be difficult to determine the optimum
number of elements without running a trial program.

PARAMETERS

P Pool handle structure, as previously passed to pool init () or
pool xinit ().

RETURN VALUE

Maximum number of elements ever allocated.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

Dynamic C Functions rabbit.com 353

http://www.rabbit.com

pktXclose

void pktXclose(void); /* X is A-F */

DESCRIPTION

Disables serial port X. The functions pktEclose () and pktFclose () may be used with
the Rabbit 3000 and Rabbit 4000.

LIBRARY
PACKET.LIB

pktXgetErrors

char pktXgetErrors(void); /* X is A-F */

DESCRIPTION

Gets a bit field with flags set for any errors that occurred on port X. These flags are then cleared,
so that a particular error will only cause the flag to be set once.

The functions pktEgetErrors () and pktFgetErrors () may be used with the
Rabbit 3000 and Rabbit 4000.

RETURN VALUE

A bit field with flags for various errors. The errors along with their bit masks are as follows:

PKT BUFFEROVERFLOW 0x01

PKT RXOVERRUN 0x02
PKT PARITYERROR 0x04
PKT NOBUFFER 0x08

LIBRARY
PACKET.LIB

354 rabbit.com Dynamic C Functions

http://www.rabbit.com

pktXinitBuffers

int pktXinitBuffers(int buf count, int buf size); /* X is A-F */

DESCRIPTION

Allocates extended memory for channel X receive buffers. This function should not be called
more than once in a program. The total memory allocated is buf_count*(buf_size + 2) bytes.

The functions pktEinitBuffers () and pktFinitBuffers () may be used with the
Rabbit 3000 and Rabbit 4000.

PARAMETERS
buf count The number of buffers to allocate. Each buffer can store one received pack-
et. Increasing this number allows for more pending packets and a larger la-
tency time before packets must be processed by the user's program.
buf size The number of bytes each buffer can accommodate. This should be set to

the size of the largest possible packet that can be expected.

RETURN VALUE

1: Success, extended memory was allocated.
0: Failure, no memory allocated, the packet channel cannot be used.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com

355

http://www.rabbit.com

pktXopen

int pktXopen(long baud, int mode, char options, int (*test packet) ()

); /* X is A-F */

DESCRIPTION

Opens serial port X. The functions pktEopen () and pktFopen () may be used with the
Rabbit 3000 and Rabbit 4000.

The packet driver is meant to be used with a variety of transceiver hardware, so some functions
must be defined by the user. Each of these functions, listed below, take no arguments and return
nothing.

e pktXinit () - Initializes the communication hardware. Called inside pktXopen ().
This function may be written in C. It will only be called once each time the packet driver
is opened, so speed is not a major concern. This is where I/O pins should be configured
and any other setup should be performed.

L]

pktXrx () - Sets the hardware to receive data. This function must be written in
assembly. Any registers besides the 8-bit accumulator A must be preserved first, and
restored before returning. This function is called when the driver switches from transmit
to receive mode once there are no packets to send. This function is necessary for half-
duplex connections and other types of shared bus schemes so that the transmitter can be
disabled, allowing other nodes to use the lines.

e pktXtx () - Sets the hardware to transmit data. This function must be written in
assembly. The same rules for register usage as for pktXrx () apply. This function is
called whenever the driver switches from receive to transmit mode in response to an
additional packet or packets being available for sending. A typical use of this function is
to enable any necessary transmitter hardware.

See the sample program Samples/PKTDEMO. C for an example of how to write these user-
supplied functions. See technical note TN213 “Rabbit Serial Port Software” for more informa-
tion on the packet driver.

356

rabbit.com Dynamic C Functions

http://www.rabbit.com

pktXopen (cont’d)

PARAMETERS
baud Bits per second of data transfer: minimum is 2400.
mode Type of packet scheme used, the options are:
e PKT GAPMODE
e PKT 9BITMODE
e PKT CHARMODE
options Further specification for the packet scheme. The value of this depends on

the mode used:
* gap mode - minimum gap size (in byte times)
* 9-bit mode - type of 9-bit protocol
e PKT RABBITSTARTBYTE
e PKT LOWSTARTBYTE
e PKT HIGHSTARTBYTE
* char mode - character marking start of packet

test packet Pointer to a function that tests for completeness of a packet. The function
should return 1 if the packet is complete, or 0 if more data should be read
in. For gap mode the test function is not used and should be set to null.

RETURN VALUE

1: The baud set on the rabbit is the same as the input baud.
0: The baud set on the rabbit does not match the input baud.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com

357

http://www.rabbit.com

pktXreceive

int pktXreceive(void * buffer, int buffer size); /* X is A-F */

DESCRIPTION

Gets a received packet, if there is one, from serial port X.

The functions pktEreceive () and pktFreceive () may be used with the Rabbit 3000
and Rabbit 4000.

PARAMETERS
buffer A buffer for the packet to be written into.

buffer size Length of the data buffer.

RETURN VALUE

>0: Number of bytes in the successfully received packet.
0: No new packet has been received.

-1: The packet is too large for the given buffer.

-2: Aneeded test packet function is not defined.

LIBRARY
PACKET.LIB

358 rabbit.com Dynamic C Functions

http://www.rabbit.com

pktXsend

int pktXsend(void *send buffer, int buffer length, char delay):;
/* X is A-F */

DESCRIPTION

Initiates the sending of a packet of data using serial port X. This function will always return im-
mediately. If there is already a packet being transmitted, this call will return 0 and the packet
will not be transmitted, otherwise it will return 1.

pktXsending () checks ifthe packet is done transmitting. The system will be using the buff-
er until then.

The functions pktEsend () and pktFsend () may be used with the Rabbit 3000 and
Rabbit 4000.

PARAMETERS
send buffer The data to be sent
buffer length Length of the data buffer to transmit

delay The number of byte times to delay before sending the data (0-255) This
is used to implement protocol-specific delays between packets

RETURN VALUE

1: The packet is going to be transmitted.
0: There is already a packet transmitting, and the new packet was refused.

LIBRARY
PACKET.LIB

Dynamic C Functions rabbit.com

359

http://www.rabbit.com

pktXsending

int pktXsending(void); /* X is A-F */

DESCRIPTION

Tests if a packet is currently being sent on serial port X. If pktXsending () returns true, the
transmitter is busy and cannot accept another packet.

The functions pktEsending () and pktFsending () may be used with the Rabbit 3000
and Rabbit 4000.
RETURN VALUE
1: A packet is being transmitted.
0: Port X is idle, ready for a new packet.

LIBRARY
PACKET.LIB

pktXsetParity

void pktXsetParity(char mode); /* X is A-F */

DESCRIPTION

Configures parity generation and checking. Can also configure for 2 stop bits.

The functions pktEsetParity () and pktFsetParity () may be used with the
Rabbit 3000 and Rabbit 4000.

PARAMETERS
mode Code for mode of parity bit:
* PKT NOPARITY - no parity bit (§N1 format, default)
¢ PKT OPARITY - odd parity (801 format)
* PKT EPARITY - even parity (8E1 format)
¢ PKT TWOSTOP - an extra stop bit (§N2 format)
LIBRARY

PACKET.LIB

360 rabbit.com Dynamic C Functions

http://www.rabbit.com

plast

void * plast(Pool t * p);

DESCRIPTION

Get the last allocated element in a root pool. The pool MUST be set to being a linked pool using
pool link(p, <non-zeros);otherwise, the results are undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool init ().

RETURN VALUE

null: There are no allocated elements
'null: Pointer to last, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, palloc, pfree, pfirst

Dynamic C Functions rabbit.com

361

http://www.rabbit.com

plast fast

xmem void * plast fast(Pool t * p);

DESCRIPTION
Get the last allocated element in a root pool. The pool MUST be set to being a linked pool using
pool link(p, <non-zeros) ; otherwise, the results are undefined.
This is an assembler-only version of plast ().

*** Do _not_ call this function from C. ***

Registers
Parameter in IX
Trashes F, DE
Return value in HL, carry flag

Example
1d ix,my pool
lcall plast fast
jr c,.no_elems
; HL points to last element

PARAMETERS

P Pool handle structure, as previously passed to pool init (). Pass this
in IX register.

RETURN VALUE

C flag set, HL=0: there are no allocated elements
C flag clear (NC): HL points to last element.

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool link, plast, pprev_fast

362 rabbit.com Dynamic C Functions

http://www.rabbit.com

pmovebetween

void * pmovebetween(Pool t * p, void * e, void * d, void * £);

DESCRIPTION

Atomically remove allocated element “e” and re-insert it between allocated elements “d” and
“f.” “Atomically” means that the POOL_IPSET level is used to lock out other CPU contexts
from altering the pool while this operation is in progress. In addition, “d” and “f” are checked
to ensure that the following conditions still hold:

pprev(p, £f) == d
and
pnext (p, d) == £

in other words, “f” follows “d.” This is useful since your application may have determined “d”
and “f” some time ago, but in the meantime some other task may have re-ordered the queue or
deleted these elements. In this case, the return value will be null. Your application should then
re-evaluate the appropriate queue elements and retry this function.

The pool MUST be set to being a linked pool by using:
pool link(p, <non-zero>)

Otherwise the results are undefined.

PARAMETERS
P Pool handle structure, as previously passed to pool init ().

e Address of element to move, obtained by, e.g., plast (). This must be an
allocated element in the given pool; otherwise, the results are undefined. If
null, then the last element is implied (i.e., whatever plast () would re-
turn). If there are no elements at all, or this parameter does not point to a
valid allocated element, then the results are undefined (and probably cata-
strophic).

Ife == dore == f, then there is no action except to check whether
“f” follows “d.” This parameter may refer to an unlinked (but allocated) el-
ement.

d First reference element. The element “e” will be inserted after this element.
On entry, it must be true that pnext (p, d) == £. Otherwise, null is
returned. If this parameter is null, then “f” must point to the first element
in the list, and “e” is inserted at the start of the list.

Dynamic C Functions rabbit.com 363

http://www.rabbit.com

pmovebetween (cont’d)

£ Second reference element. The element “e” will be inserted before this el-

ement. On entry, it must be true that pprev (p,

f) == d. Otherwise,

null is returned. If this parameter is null, then “d” must point to the last el-
ement in the list, and “e” is inserted at the end of the list.

Note: If both “d” and “f” are null, then it must be true that there are no allocated ele-
ments in the linked list, and the element “e” is added as the only element in the list. This
proviso only obtains when the element “e” is initially allocated from an empty pool

with:
pool link (p,

POOL_LINKED BY APP)

The allocated element is not in the linked list of allocated elements.

RETURN VALUE

Returns the parameter value “e,” unless “e” was null; in which case the value of plast (), if
called at function entry, would be returned. If the initial conditions for “d” and “f” do not hold,

then null is returned with no further action.

EXAMPLES
void * d, * e, * f;
e = plast(p); // element to move
f = pnext(p, d = pfirst(p)); // d,fare first 2 elements
pmovebetween (p, e, d, £f);
LIBRARY
POOL.LIB
SEE ALSO
pool init, pool link, plast, pfirst, pnext, pprev, preorder
364 rabbit.com Dynamic C Functions

http://www.rabbit.com

pmovebetween fast

void * pmovebetween fast(Pool t *p, void *e, void *d, void *f);

DESCRIPTION

See description under pmovebetween () . This is an assembler- callable version (do not call
from C). It does not issue IPSET protection or check parameters.

REGISTERS: Parameters in [X, DE, BC, HL respectively
Trashes AF, BC, DE, BC', DE', HL'
Return value in HL, carry flag.

PARAMETERS
P Pool handle structure, as previously passed to pool init ().PassinIX
register
e Address of element to move. Pass in DE register.
d The first reference element. Pass in BC register.
£ The second reference element. Pass in HL register.

RETURN VALUE

In HL. Either set to “e” parameter, or 0. The carry flag is set if HL==0; otherwise it is clear.

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween

Dynamic C Functions rabbit.com 365

http://www.rabbit.com

pnel

word pnel(Pool t * p);

DESCRIPTION
Return the number of elements that are in the pool, both free and used. This includes elements

appended using pool append () etc.

PARAMETERS

P Pool handle structure, as previously passed to pool init () or
pool xinit ().

RETURN VALUE

Number of elements total

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

366 rabbit.com Dynamic C Functions

http://www.rabbit.com

pnext

void * pnext(Pool t * p, void * e);

DESCRIPTION

Get the next allocated element in a root pool. The pool MUST be set to being a linked pool using
pool link(p, <non-zeros);otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of a root pool using the following
construct:

void * e;
Pool t * p;
for (e = pfirst(p); e; e = pnext(p, e)) {

}
PARAMETERS
P Pool handle structure, as previously passed to pool init ().
e Previous element address, obtained by, e.g., pfirst (). This must be an

allocated element in the given pool; otherwise, the results are undefined.
Be careful when iterating through a list and deleting elements using
pfree (): once the element is deleted, it is no longer valid to pass its ad-
dress to this function.

If this parameter is null, then the result is the same as pfirst (). This en-
sures the invariant pnext (p, pprev(p, e)) == e.
RETURN VALUE

null: There are no more elements
Inull: Pointer to next allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool link, palloc, pfree, pfirst, pprev

Dynamic C Functions rabbit.com 367

http://www.rabbit.com

pnext fast

xmem void * pnext fast(Pool t * p, void * e);

DESCRIPTION

Get the next allocated element in a root pool. The pool MUST be set to being a linked pool using
pool link(p, <non-zeros);otherwise, the results are undefined.

This is an assembler-only version of pnext ().
Do _not_ call this function from C. ***
Registers

Parameters in X, DE respectively
Trashes F, DE
Return value in HL, carry flag

Example

1d ix,my pool

1d de, (current element)

lcall pnext fast

jr c,.no _more elems

HL points to the next allocated element

12

PARAMETERS
P Pool handle structure, as previously passed to pool init (). Pass this
in IX register.
e Current element, address in DE register. See pnext () for a full descrip-

tion.

RETURN VALUE

C flag set, HL=0: There are no more elements
C flag clear (NC): HL points to next element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool 1link, palloc, pfree, pfirst, pprev

368 rabbit.com Dynamic C Functions

http://www.rabbit.com

poly

float poly(float x, int n, float cl[]);

DESCRIPTION

Computes polynomial value by Horner's method. For example, for the fourth-order polynomial
10x* - 3x% + 4x + 6, n would be 4 and the coefficients would be

cl[4] = 10.0
c[3] = 0.0
cl[2] = -3.0
c[1l] = 4.0
cl[o] = 6.0
PARAMETERS

X Variable of the polynomial.

n The order of the polynomial

c Array containing the coefficients of each power of x.

RETURN VALUE

The polynomial value.

LIBRARY
MATH.LIB

Dynamic C Functions rabbit.com 369

http://www.rabbit.com

pool append

int pool append(Pool t * p, void * base, word nel);

DESCRIPTION

Add another root memory area to an existing pool. It is assumed that the element size is the same
as the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be
nel*elsize bytes long (where el size is the element size of the existing pool, and nel is
the parameter to this function).

The total pool size must obey the constraints documented with pool init ().

PARAMETERS
P Pool handle structure, as previously passed to pool init ().
base Base address of the root data memory area to append to this pool. This must
be nel*elsize bytes long. Typically, this would be a static (global) ar-
ray.
nel Number of elements in the memory area.The sum of nel and the current

number of elements must not exceed 32767.

RETURN VALUE

Currently always zero. If you define the macro POOL DEBUG, then parameters are checked. If
the parameters look bad, then an exception is raised. You can define POOL_VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init

370 rabbit.com Dynamic C Functions

http://www.rabbit.com

pool init

int pool init(Pool t * p, void * base, word nel, word elsize);

DESCRIPTION

Initialize a root memory pool. A pool is a linked list of fixed-size blocks taken from a contigu-
ous area. You can use pools instead ofmalloc () when fixed-size blocks are all that is needed.
You can have several pools, with different size blocks. Using memory pools is very efficient
compared with more general functions like malloc (). (Thereis currentlynomalloc () im-
plementation with Dynamic C.)

This function should only be called once, at program startup time, for each pool to be used.

Note: the product of nel and el size must be less than 65535 (however, this will usually be
limited further by the actual amount of root memory available).

After calling this function, your application must not change any of the fields in the Pool t

structure.
PARAMETERS

P Pool handle structure. This is allocated by the caller, but this function will
initialize it. Normally, this would be allocated in static memory by declar-
ing a global variable of type Pool t.

base Base address of the root data memory area to be managed in this pool. This
must be nel*elsize bytes long. Typically, this would be a static (glo-
bal) array.

nel Number of elements in the memory area. 1..32767

elsize Size of each element in the memory area. 2..32767

RETURN VALUE

Currently always zero. If you define the macro POOL_DEBUG, then parameters are checked. If
the parameters look bad, then an exception is raised. You can define POOL_VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, palloc, pcalloc, pfree, phwm, pavail

Dynamic C Functions rabbit.com 371

http://www.rabbit.com

pool link

int pool link(Pool t * p, int link);

DESCRIPTION
Tell the specified pool to maintain a doubly-linked list of allocated elements.

This function should only be called when the pool is completely free; i.e.,
pavail () == pnel()
PARAMETERS

P Pool handle structure, as previously passed to pool init () or
pool xinit ().

link Must be one of the following:

* POOL_NOT_LINKED (0): the pool is not to be linked.

* POOL_LINKED_ AUTO (1): the poolis linked, and newly allocated
elements are always added at the end of the list.

* POOL_LINKED BY APP (2): the pool is linked, but newly allo-
cated elements are not added to the list. The application must call

preorder () orpmovebetween () to insert the element. This
option is only available for root pools.

WARNING: if you set the POOL_LINKED BY APP option, then the al-
located element must NOT be passed to any other pool API function except
forpfree (), preorder () (asthe “e” parameter) or
pmovebetween () (as the “e” parameter). After calling preorder ()
or pmovebetween (), then it is safe to pass this element to all appropri-
ate functions.

RETURN VALUE

Currently always zero. If you define the macro POOL_DEBUG, then parameters are checked. If
the parameters look bad, then an exception is raised. You can define POOL VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool xinit, pavail

372 rabbit.com Dynamic C Functions

http://www.rabbit.com

pool xappend

int pool xappend(Pool t * p, long base, word nel);

DESCRIPTION

Add another xmem memory area to an existing pool. It is assumed that the element size is the
same as the element size of the existing pool.

The data area does not have to be contiguous with the existing data area, but it must be
nel*elsize bytes long (where el size is the element size of the existing pool, and nel is
the parameter to this function).

The total pool size must obey the constraints documented with pool xinit ().

PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().
base Base address of the xmem data memory area to append to this pool. This
must be nel*elsize bytes long. Typically, this would be an area allo-
cated using xalloc ().
nel Number of elements in the memory area. 1..65534. The sum of this and the

current number of elements must not exceed 65535.

RETURN VALUE

Currently always zero. If you define the macro POOL DEBUG, then parameters are checked. If
the parameters look bad, then an exception is raised. You can define POOL_VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit

Dynamic C Functions rabbit.com 373

http://www.rabbit.com

pool xinit

int pool xinit(Pool t * p, long base, word nel, word elsize);

DESCRIPTION

Initialize an xmem memory pool. A pool is a linked list of fixed-size blocks taken from a con-
tiguous area. You can use pools instead of malloc() when fixed-size blocks are all that is needed.
You can have several pools, with different size blocks. Using memory pools is very efficient
compared with more general functions like malloc(). (There is currently no malloc() implemen-
tation with Dynamic C.)

This function should only be called once, at program startup time, for each pool to be used.

After calling this function, your application must not change any of the fields in the Pool t

structure.
PARAMETERS

P Pool handle structure. This is allocated by the caller, but this function will
initialize it. Normally, this would be allocated in static memory by declar-
ing a global variable of type Pool t.

base Base address of the xmem data memory area to be managed in this pool.
This must be nel *elsize bytes long. Typically, this would be an area
allocated by xalloc () when your program starts.

nel Number of elements in the memory area. 1..65535

elsize Size of each element in the memory area. 4..65535

RETURN VALUE

Currently always zero. If you define the macro POOL_DEBUG, then parameters are checked. If
the parameters look bad, then an exception is raised. You can define POOL VERBOSE to get
printf () messages.

LIBRARY
POOL.LIB

SEE ALSO

pool init, pxalloc, pxcalloc, pxfree, phwm, pavail

374 rabbit.com Dynamic C Functions

http://www.rabbit.com

pow

float pow(float x, float y):

DESCRIPTION

Raises x to the yth power.

PARAMETERS
X Value to be raised
y Exponent

RETURN VALUE
X to the yth power

LIBRARY
MATH.LIB

SEE ALSO
exp, powlO, sqgrt

powlO

float powl0(float x);

DESCRIPTION

10 to the power of x.

PARAMETERS

X Exponent

RETURN VALUE

10 raised to power x

LIBRARY
MATH.LIB

SEE ALSO

pow, exp, sdgrt

Dynamic C Functions rabbit.com

375

http://www.rabbit.com

powerspectrum

void powerspectrum(int * x, int N, * int blockexp):;

DESCRIPTION

Computes the power spectrum from a complex spectrum according to

Power [k] = (Re X[k])? + (Im X[k])?

The N-point power spectrum replaces the N-point complex spectrum. The power of each com-
plex spectral component is computed as a 32-bit fraction. Its more significant 16-bits replace
the imaginary part of the component; its less significant 16-bits replace the real part.

If the complex input spectrum is a positive-frequency spectrum computed by £ftreal (), the
imaginary part of the X[0] term (stored x [1]) will contain the real part of the fimax term and
will affect the calculation of the dc power. If the dc power or the fimax power is important, the
fmax term should be retrieved from x [1] and x [1] set to zero before calling
powerspectrum ().

The power of the kth term can be retrieved via
P [k]=* (long*) &x [2k] *2"blockexp.

The value of blockexp is first doubled to reflect the squaring operation applied to all ele-
ments in array x. Then it is further increased by 1 to reflect an inherent division by two that oc-
curs during the squaring operation.

PARAMETERS
X Pointer to N-element array of complex fractions.
N Number of complex elements in array x.

blockexp Pointer to integer block exponent.

LIBRARY
FFT.LIB

SEE ALSO

ffteplx, fftcplxinv, fftreal, fftrealinv, hanncplx, hannreal

376 rabbit.com Dynamic C Functions

http://www.rabbit.com

pprev

void * pprev(Pool t * p, void * e);

DESCRIPTION

Get the previously allocated element in a root pool. The pool MUST be set to being a linked
pool using pool link (p, <non-zeros);otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of a root pool using the following
construct:

void * e;
Pool t * p;

for (e = plast(p); e; e = pprev(p, e)) {

}
PARAMETERS
P Pool handle structure, as previously passed to pool init ().
e Previous element address, obtained by, e.g., plast () . This must be an al-

located element in the given pool; otherwise, the results are undefined. Be
careful when iterating through a list and deleting elements using

pfree (): once the element is deleted, it is no longer valid to pass its ad-
dress to this function. If this parameter is null, then the result is the same
as plast (). This ensures the invariant

pprev(p, pnext(p, e)) == e

RETURN VALUE

null: There are no more elements
!null: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool link, palloc, pfree, plast, pnext

Dynamic C Functions rabbit.com 377

http://www.rabbit.com

pprev_ fast

xmem void * pprev_fast(Pool t * p, void * e);

DESCRIPTION
Get the previous allocated element in a root pool. The pool MUST be set to being a linked pool
by using pool link(p, <non-zeros);otherwise, the results are undefined.
This is an assembler-only version of pprev ().
Do _not_ call this function from C. ***

Registers

Parameters in X, DE respectively
Trashes F, DE
Return value in HL, carry flag

Example

1d ix,my pool

1d de, (current element)

lcall pprev_fast

jr c,.no _more elems

; HL points to previously allocated element

PARAMETERS
P Pool handle structure, as previously passed to pool init (). Pass this
in IX register.
e Current element, address in DE register. See pprev () for fuller descrip-

tion.

RETURN VALUE

C flag set, HL=0: There are no more elements
C flag clear (NC): HL points to previous element

LIBRARY
POOL.LIB

SEE ALSO
pool init, pool 1link, palloc, pprev

378 rabbit.com Dynamic C Functions

http://www.rabbit.com

pputlast

void * pputlast(Pool t * p, void * e);

DESCRIPTION

Atomically remove allocated element “¢” and re-insert it at the end of the allocated list. “Atom-
ically” means that the POOL_IPSET level is used to lock out other CPU contexts from altering
the pool while this operation is in progress.

This is equivalent to:
pmovebetween (p, e, plast (p), NULL);
but is considerably faster.

A common use for this function is to insert an element allocated when the

POOL LINKED BY APP attribute is set for the pool, at the end of the allocated list. This is
useful when, say, an ISR allocates and uses a buffer without placing it on the allocated list. Only
when the buffer is complete does the ISR use this function to place it on the queue for reading
by the main application.

The pool MUST be set to being a linked pool by using:
pool link(p, <non-zeros);

otherwise the results are undefined.

PARAMETERS
P Pointer to pool handle structure, as previously passed to pool init ().
e Address of element to move. If NULL, then this function behaves as

plast ().

RETURN VALUE

Same as the “e” parameter, unless “e” is NULL in which case the existing last element is re-
turned as per plast ().

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween, pool link

Dynamic C Functions rabbit.com 379

http://www.rabbit.com

pputlast fast

void * pputlast fast(Pool t * p, void * e);

DESCRIPTION
See description under pputlast (). This is an assembler-callable version (do not call from
C). It does not issue IPSET protection or check parameters.

Registers:

Parameters in IX (“p”) and DE (“¢”)
Trashes F, DE, BC
Return value in HL

PARAMETERS
P Pointer to pool handle structure, as previously passed to pool init ().
Pass in [X register
e Address of element to move. Pass in DE register. [f NULL, then this func-

tion behaves as plast fast ().

RETURN VALUE

In HL. Same as the “e” parameter, unless “e” is NULL in which case the existing last element
is returned as per plast_fast ().

LIBRARY
POOL.LIB

SEE ALSO

pmovebetween, pool link

premain

void premain(void);

DESCRIPTION

Dynamic C calls premain to start initialization functions such as VdInit. The final thing
premain does is call main. This function should never be called by an application program.
It is included here for informational purposes only.

LIBRARY
PROGRAM.LIB

380 rabbit.com Dynamic C Functions

http://www.rabbit.com

preorder

void * preorder(Pool t *p, void *e, void *where, word options);

DESCRIPTION

Atomically remove allocated element “e” and re-insert it before or after element “where.”
“Atomically” means that the POOL_IPSET level is used to lock out other CPU contexts from
altering the pool while this operation is in progress.

The pool MUST be set to being a linked pool by using:

pool link(p, <non-zeros)

Otherwise the results are undefined.

PARAMETERS

p

e

where

options

Pool handle structure, as previously passed to pool init ().

Address of element to move, obtained by e.g., plast (). This must be an
allocated element in the given pool; otherwise, the results are undefined. If
null, then the last element is implied (i.e., whatever plast () would re-
turn). If there are no elements at all, or this parameter does not point to a
valid allocated element, then the results are undefined (and probably cata-
strophic).

The reference element. The element “e” will be inserted before or after this
element, depending on the options parameter. If e==where, then there is
no action. If this parameter is null, then the reference element is assumed
to be the first element (i.e., whatever pfirst () would return). If there
are no elements at all, or this parameter does not point to a valid allocated
element, then the results are undefined (and probably catastrophic).

Option flags. Currently, the only options are:

POOL_INSERT BEFORE
POOL_INSERT AFTER

which specifies whether “e” is to be inserted before or after “where.”

Dynamic C Functions

rabbit.com

381

http://www.rabbit.com

preorder (cont’d)

RETURN VALUE

Returns the parameter value “e” unless “e” was null, in which case the value of plast (),
when called at function entry, would be returned.

IMPORTANT: If null is returned, that means that some other task (context, or
ISR) modified the linked list while this operation was in progress. In this case, the
application should call this function again with the same parameters, since this
operation will NOT have completed. This would be a rare occurrence; however,
multitasking applications should handle this case correctly.

EXAMPLES

void * r;
void * s;

s = pnext(p, pfirst(p); // sissecond element
r = plast(p); // rislast element
preorder (p, s, r, POOL INSERT AFTER) ;

// Ifs!=r, then s will become the new last element. You can use null

// parameters to perform the common case of moving the last element
// to the head of the list:

preorder (p, NULL, NULL, POOL_ INSERT BEFORE) ;

// which is identical to:.
preorder (p, plast(p), pfirst(p), POOL INSERT BEFORE) ;

LIBRARY
POOL.LIB

SEE ALSO

pool init, pool 1link, plast, pfirst, pnext, pprev, pmovebetween

382 rabbit.com Dynamic C Functions

http://www.rabbit.com

printf

int printf(char *fmt, ...);

DESCRIPTION

This function is similar to sprint £ (), but outputs the formatted string to the Stdio window.
Prior to Dynamic C 7.25, printf () would work only with the controller in program mode
connected to a PC running Dynamic C. As of Dynamic C 7.25, it is possible to redirect
printf () output to a serial port during run mode by defining a macro to specify the serial
port. See the sample program SAMPLES/STDIO SERIAL. C for more information.

See below for the complete list of Dynamic C Conversion Specifiers.
The user should make sure that:

* there are enough arguments after fmt to fill in the format parameters in the format string
* the types of arguments after fmt match the conversion specifiers in £mt

The macro STDIO DISABLE_ FLOATS can be defined ifit is not necessary to format floating
point numbers. If this macro is defined, %e, %f and %g will not be recognized. This can save
thousands of bytes of code space.

The macro STDIO ENABLE LONG_ STRINGS can be defined if it is necessary to print
strings to the Stdio window that are longer than the default of 127 bytes. Without defining this
macro, such strings are truncated. The drawback of defining this macro is that if it is defined in
a multi-tasking application where more than one task is utilizing printf and at least one of the
tasks is printing strings longer than 127 bytes, the user must ensure that calls to printf are seri-
alized via a semaphore or similar means. If calls to printf are not serialized under these condi-
tions, printf output from the different tasks may be interleaved in the Stdio window.

Note: this function is task reentrant and it has a 128 byte buffer.

PARAMETERS
fmt String to be formatted.
.o Format arguments.

RETURN VALUE

Number of characters written

LIBRARY
STDIO.LIB

SEE ALSO
sprintf

Dynamic C Functions rabbit.com 383

http://www.rabbit.com

printf (cont’d)

DYNAMIC C CONVERSION SPECIFIERS

%s - string

%]s - null terminated string in xmem
%d - signed decimal

%u - unsigned decimal

%f - float

%e - exponential

%g - floating point, same as %f or %e depending upon value and precision

%p - pointer
%]Ip - pointer

%3x - hexadecimal, result in lowercase

%X - hexadecimal, same as %x but result in uppercase

%c - single character

%s - string

The precision specifier (the number between “%” and “s”) determines the maximum number

of characters to display.

7] |
maini)
.r intf(">%s<\n™, "a");
pEintE (M=% i Fsxyn; Mart) ‘E«Jew;w_ N
printf(">x3=<in”, "a") ; IE'J['_[TU
printf(">%¥-3=<hvn", "am); 5 |
s oas
a4 EEU
printf(wawwwwwwwwwwwxwwxw\nnj;jggg?
#abody
rabodd
printf(">%s<n", Tabod™) ;
printf ("% .33<vn", "abed™) 2
printf(">%3s<hn", Tabhod™) ;
printf (">%-33<vn", "abod™) 2
i
| S T—

As shown in the screenshot above, a value to the right of ““. ” causes the string to be displayed
with that number of characters, ignoring extra characters. A value by itself or to the left of «“.”
causes padding. Negative values cause the string to be left justified, with spaces added to the
right if necessary. Positive values cause the string to be right justified, with spaces added to

the left if necessary.

384

rabbit.com

Dynamic C Functions

http://www.rabbit.com

printf (cont’d)

%Is - null terminated string in xmem

This conversion specifier is identical to “%s” but the strings come from extended memory in-

stead of root memory.

xdata mystring {“Now is the time.”};

printf (*%1ls”, mystring) ;

%d - signed decimal

Width specifier I: short values must not include 1; without 1, long values are treated as short

// Now is the time.

Precision specifier n: includes '-' and if necessary treats argument as signed

short n;

n = 30000;

printf ("%d", n); //
printf ("%5d", n); //
printf ("%6d", n); //
printf ("%44", n); //
unsigned short n;

n = 40000;

printf ("%d", n); //
printf ("%$64", n); //
printf ("$74", n); //
printf ("$54", n); //
long n;

n = 300000;

printf ("%1d", n); //
printf ("$714", n); //

%u - unsigned decimal

30000
30000
30000

* Kk k%

-25536
-25536

-25536
* kK kK

300000
300000

Width specifier I: long values must include 1, short values must not:

Precision specifier n: includes '-' if necessary treats argument as if it were unsigned

short n;
n = -25536;
printf ("%u", n); //

unsigned short n;
n = 40000;
printf ("%d", n); //

40000

40000

Dynamic C Functions

rabbit.com

385

http://www.rabbit.com

printf (cont’d)

%f - float
Width specifier 1 is ignored for Dynamic C float and double (both 4 bytes)

float f£f;

f = -88.8888;

printf ("$f", £);

printf ("%$10£f", £

printf ("%9f", f)

printf("%.0£f", £
f
f

printf
printf
printf
printf

(
(
(
(
printf ("$.3f",
(
(
(
(
printf (

%e - exponential
Width specifier 1 is ignored for Dynamic C float and double (both 4 bytes)

// -88.888801
// -88.888801

// kkkkkkhh Kk

// -89
// -88.
// -88.
// -88.
// -88.
// -88.

889
889
889
889
889

// *kkkkk

Precision specifier n . d: n is the total width including '-' and '." ; if n is zero or is omitted, it is
ignored and only d is used.

Precision specifier n.d: n is the total width excluding exponent sign; if n is zero or is omitted,
it is ignored and only d is used; if n larger than width, the result is not padded. d is decimal
places of n.nnn..E[+/-]nn format

float £f;
f = -88.8888;
printf ("%e\n", £f); // -8.888880E+01
printf ("%$13e\n", f); // -8.888880E+01
printf ("%$12e\n", f); // -8.888880E+01
printf ("%.0e\n", f); // -9E+01
printf ("%.1e\n", f); // -8.9E+01
printf ("%.3e\n", f); // -8.889E+01
printf ("%0.3e\n", f); // -8.889E+01
printf ("%9.3e\n", f); // -8.889E+01
printf ("%$15.3e\n", f); // -8.889E+01
printf("%8.3e\n", f),. // d ok kkkkk Kk
printf ("%8.3e\n", -f); // 8.889E+01

386 rabbit.com Dynamic C Functions

http://www.rabbit.com

printf (cont’d)

%pg - floating point
(Same as %f or %e depending upon value and precision.)
float £, g, h;

f = -888.8888;
g = 888888.0
g = 8888880.0
printf ("%g\n", g); // 888888.0
printf ("$g\n", h); // 8.888880E+06
printf ("$g\n", f); //-888.888790
printf ("%$13g\n", f); // -888.888790
printf ("%$12g\n", f); // -888.888790
printf ("%.0g\n", f); // -8.9E+02
printf ("%.1g\n", £f); // -8.9E+02
printf ("%.2g\n", f); // -8.89E+02
printf ("%.3g\n", f); // -888.889
printf("%7.3g\n", f), // * ok kkk kK
printf ("$0.3g\n", f); // -888.889
printf ("%$9.3g\n", f); // -888.889
printf ("$15.3g\n", f); // -888.889
printf ("%8.3g\n", f); // -888.889
printf ("%8.3g\n", -f); // 888.889

%p - pointer

Specifies a 16-bit logical pointer.

int i, *iptr;
i = 0;
ptr = &i;
printf ("$p\n",ptr) ; // prints value of ptr in hex.

// logical memory location of i

%Ip - pointer
Specifies a 32-bit physical pointer.

long i, *iptr;

i = 0;
ptr = &i;
printf ("$1p\n",ptr) ; // prints value of ptr in hex.
// physical memory location of i

Dynamic C Functions rabbit.com 387

http://www.rabbit.com

printf (cont’d)

%x - hexadecimal
Result in lowercase
Width specifier I: short values must not include 1; without 1, long values are treated as short
Precision specifier n: must be at least as large as total width; treats argument as if it were un-

signed
short n;
n = 30000;
printf ("%x", n); //7530
printf ("%5x", n); // 7530
printf ("%6x", n); // 7530
printf ("%3x", n); /] *x*
unsigned short n;
n = 40000;
printf ("%x", n); // 9c40
long m, n;
m = -25536;
n = 0x10000 + Oxabc;
printf ("$x\n", m); // 9c40
printf ("$x\n", z); // abc

%X - hexadecimal
Same as %x except the result is in uppercase.

%c - single character

Precision specifier nn is ignored for % c; treats argument as if it were char

long n;
n = 0x10000 + 0x100 + 'A';
printf ("%0c", n); // A

short n;
n = 0x100 + 'A';
printf ("%0c", n); // A

char n;
n = 'A';
printf ("%0c", n); // A

Not supported:

%0 - octal
%E - same as %e, result uppercase (the result is always in uppercase in Dynamic C)
%G - same as %g, result uppercase (the result is always in uppercase in Dynamic C)

388

rabbit.com Dynamic C Functions

http://www.rabbit.com

putchar

void putchar(int ch);

DESCRIPTION

Puts a single character to Stdout. The user should make sure only one process calls this function
at a time.

PARAMETERS
ch Character to be displayed.

LIBRARY
STDIO.LIB

SEE ALSO
puts, getchar

puts

int puts(char * s);

DESCRIPTION

This function displays the string on the stdio window in Dynamic C. The Stdio window is re-
sponsible for interpreting any escape code sequences contained in the string. Only one process
at a time should call this function.

PARAMETERS
s Pointer to string argument to be displayed.

RETURN VALUE

1: Success.

LIBRARY
STDIO.LIB

SEE ALSO
putchar, gets

Dynamic C Functions rabbit.com 389

http://www.rabbit.com

pwm_init

unsigned long pwm_init(unsigned long frequency);

DESCRIPTION

Sets the base frequency for the pulse width modulation (PWM) and enables the PWM driver on
all four channels. The base frequency is the frequency without pulse spreading. Pulse spreading
(see pwm_set ()) will increase the frequency by a factor of 4.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.
PARAMETER

frequency Requested frequency (in Hz)

RETURN VALUE

The actual frequency that was set. This will be the closest possible match to the requested fre-
quency.

LIBRARY
PWM.LIB (was in R3000.LIB prior to DC 10)

390 rabbit.com Dynamic C Functions

http://www.rabbit.com

pwm set

int pwm set(int channel, int duty cycle, int options);

DESCRIPTION
Sets a duty cycle for one of the pulse width modulation (PWM) channels. The duty cycle can
be a value from 0 to 1024, where 0 is logic low the whole time, and 1024 is logic high the whole
time. Option flags are used to enable features on an individual PWM channel. Bit masks for

these are:

* PWM_SPREAD - sets pulse spreading. The duty cycle is spread over four separate pulses
to increase the pulse frequency.

* PWM_OPENDRAIN - sets the PWM output pin to be open-drain instead of a normal push-
pull logic output.

This function is intended for use with the Rabbit 3000 and Rabbit 4000.

PARAMETERS
channel channel(0 to 3)
duty cycle value from 0 to 1024
options combination of optional flags (see above)

RETURN VALUE

0: Success.
- 1: Error, an invalid channel number is used.

-2: Error, requested duty cycle isinvalid.

LIBRARY
PWM.LIB (was in R3000.LIB prior to DC 10)

Dynamic C Functions rabbit.com

391

http://www.rabbit.com

pxalloc

long pxalloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pfree () to avoid memory leaks.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE
0: No free elements are available.
1 0: Physical (xmem address) of an element. If the pool is not linked, your application can use
this element provided it does not write more than p- >elsize bytes to it (this was the

elsize parameter passed to pool xinit ()). Ifthe poolis linked, you can write up to
(p->elsize-8) bytes to it. (Each element has 8 bytes of overhead when the pool is

linked.)
LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pxcalloc, pxfree, phwm, pavail

392 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxalloc fast

xmem long pxalloc fast(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pxfree () to avoid memory leaks.

This is an assembler-only version of pxalloc ().
*** Do _not_ call this function from C. ***

pxalloc_fast does not perform any IPSET protection, parameter validation, or update the
high-water mark. pxalloc fast isaroot function. The parameter must be passed in IX, and
the returned element address is in BCDE.

REGISTERS

Parameter in X
Trashes AF, HL
Return value in BCDE, carry flag.

EXAMPLE
1d ix,my pool
lcall pxalloc fast
jr ¢, .no _free
; BCDE points to element
PARAMETERS
P Pool handle structure, as previously passed to pool init () Pass this

in the IX register.

RETURN VALUE

C flag set: No free elements are available. (BCDE is undefined in this case.)

NC flag: BCDE points to an element If the pool is not linked, your application must not write
more than p- >elsize bytes to it (this was the el size parameter passed to

pool xinit ()).If the poolis linked, you can write (p- >elsize- 8) bytes to it. (An ele-
ment has 8 bytes of overhead when the pool is linked.)

LIBRARY
POOL.LIB

SEE ALSO

pool init, pfree fast, pavail fast, pxalloc

Dynamic C Functions rabbit.com

393

http://www.rabbit.com

pxcalloc

long pxcalloc(Pool t * p);

DESCRIPTION

Return next available free element from the given pool. Eventually, your application should re-
turn this element to the pool using pxfree () to avoid memory leaks.

The element is set to all zero bytes before returning.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: No free elements are available.

1 0: Physical (xmem address) of an element. If the pool is not linked, your application must not
write more than p->elsize bytes to it (this was the el size parameter passed to
pool xinit ()). The application can write up to (p- >elsize-8) bytes to the element
if the pool is linked. (An element has 8 bytes of overhead when the pool is linked.)
LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pxalloc, pxfree, phwm, pavail

394 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxfirst

long pxfirst(Pool t * p);

DESCRIPTION
Get the first allocated element in an xmem pool. The pool MUST be set to being a linked pool

using pool link (p, <non-zerox);otherwise, the results are undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: There are no allocated elements
1 0: Pointer to first, i.e., oldest, allocated element.

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxlast, pxnext, pxprev

Dynamic C Functions rabbit.com 395

http://www.rabbit.com

pxfirst fast

xmem long pxfirst fast(Pool t * p);

DESCRIPTION

Get the first allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool link (p, <non-zerox);otherwise, the results are undefined.

This is an assembler-only version of pxfirst ().
*** Do _not_ call this function from C. ***
Registers

Parameter in IX
Trashes F, HL
Return value in BCDE, carry flag

Example

1d ix,my pool

lcall pxfirst fast

jr ¢, .no _elems

; BCDE points to first element

PARAMETERS

P Pool handle structure, as previously passed to pool init (). Pass this
in IX register.

RETURN VALUE

C flag set: There are no allocated elements
C flag clear (NC): BCDE points to first element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxfirst, pxnext fast

396 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxfree

void pxfree(Pool t * p, long e);

DESCRIPTION
Free an element that was previously obtained via pxalloc ().
Note: if you free an element that was not allocated from this pool, or was already free, or was

outside the pool, then your application will crash! You can detect most of these programming
errors by defining the following symbols before #use pool.lib:

POOL_DEBUG
POOL_VERBOSE

PARAMETERS
P Pool handle structure, as previously passed to pxalloc ().
e Element to free, which was returned from pxalloc ().

RETURN VALUE

null: There are no more elements
'null: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pxalloc, pxcalloc, phwm, pavail

Dynamic C Functions rabbit.com

397

http://www.rabbit.com

pxfree fast

xmem void pxfree fast(Pool t * p, long e);

DESCRIPTION

Free an element that was previously obtained via pxalloc (). This is an assembler-only ver-
sion of pxfree ().

%* Do _not_ call this function from C. *

pxfree fast does not perform any IPSET protection or parameter validation.
pxfree fast is an xmem function. The parameters must be passed in machine registers.

Registers

Parameters in IX, BCDE respectively
Trashes AF, BC, DE, HL

Example

1d ix,my pool

1d de, (element addr)
1d bc, (element addr+2)
lcall pxfree fast

PARAMETERS
P Pool handle structure, as previously passed to palloc () or
palloc_fast. This must be in the IX register.
e Element to free, which was returned from palloc (). This must be in the

BCDE register (physical address)

RETURN VALUE

null: There are no more elements
'null: Pointer to previous allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool init, pxalloc fast, pavail fast, pfree fast

398 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxlast

long pxlast(Pool t * p);

DESCRIPTION
Get the last allocated element in an xmem pool. The pool MUST be set to being a linked pool

using pool link (p, <non-zerox);otherwise, the results are undefined.

PARAMETERS

P Pool handle structure, as previously passed to pool xinit ().

RETURN VALUE

0: There are no allocated elements
1 0: Pointer to last, i.e., youngest, allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxfirst

Dynamic C Functions rabbit.com 399

http://www.rabbit.com

pxlast fast

xmem long pxlast fast(Pool t * p);

DESCRIPTION

Get the last allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool link (p, <non-zerox);otherwise, the results are undefined.

This is an assembler-only version of pxlast ().
Do _not_ call this function from C. ***
Registers

Parameter in IX
Trashes F, HL
Return value in BCDE, carry flag

Example

1d ix,my pool

lcall pxlast fast

jr ¢, .no _elems

; BCDE points to last element

PARAMETERS

P Pool handle structure, as previously passed to pool xinit (). Pass this
in IX register.

RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE points to last element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxlast, pxprev_ fast

400 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxnext

long pxnext(Pool t * p, long e);

DESCRIPTION

Get the next allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool link (p, <non-zerox);otherwise, the results are undefined.

You can easily iterate through all of the allocated elements of a root pool using the following
construct:

long e;
Pool t * p;

for (e = pxfirst(p); e; e = pxnext(p, e)) {
}
PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().
e Previous element address, obtained by e.g. pxfirst (). This must be an

allocated element in the given pool, otherwise the results are undefined. Be
careful when iterating through a list and deleting elements using
pxfree () : once the element is deleted, is is no longer valid to pass its
address to this function. If this parameter is zero, then the result is the same
as pxfirst (). This ensures the invariant

pxnext (p, pxprev(p, e)) == e.

RETURN VALUE

0: There are no more elements
1 0: Pointer to the next allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxfirst, pxprev

Dynamic C Functions rabbit.com 401

http://www.rabbit.com

pxnext fast

xmem long pxnext fast(Pool t * p, long e);

DESCRIPTION
Get the next allocated element in an xmem pool. The pool MUST be set to being a linked pool
using pool link (p, <non-zerox);otherwise, the results are undefined.
This is an assembler-only version of pxnext ().
*** Do _not_ call this function from C. ***

Registers

Parameters in X, DE respectively
Trashes AF, HL
Return value in BCDE, carry flag

Example

1d ix,my pool

1d de, (current element)

1d bc, (current element+2)

lcall pxnext fast

jr c,.no _more elems

; BCDE points to next allocated element

PARAMETERS
P Pool handle structure, as previously passed to pool xinit (). Pass this
in the IX register.
e Current element, address in BCDE register. See pxnext () for fuller de-

scription.

RETURN VALUE

C flag set: There are no more elements
C flag clear (NC): BCDE points to next element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxfirst, pxprev

402 rabbit.com Dynamic C Functions

http://www.rabbit.com

pxprev

long pxprev(Pool t * p, long e);

DESCRIPTION

Get the previous allocated element in an xmem pool. The pool MUST be set to being a linked
pool using pool link(p, <non-zeros);otherwise the results are undefined.

You can easily iterate through all of the allocated elements of an xmem pool using the following
construct:

long e;
Pool t * p;
for (e = pxlast(p); e; e = pxprev(p, e)) {

}
PARAMETERS
P Pool handle structure, as previously passed to pool xinit ().
e Previous element address, obtained by e.g., pxlast (). This must be an

allocated element in the given pool; otherwise, the results are undefined.
Be careful when iterating through a list and deleting elements using
pxfree () :once the element is deleted, it is no longer valid to pass its ad-
dress to this function. If this parameter is zero, then the result is the same
as pxlast (). This ensures the invariant

pxlast (p, pxnext(p, e)) == e

RETURN VALUE

0: There are no more elements
1 0: Points to previously allocated element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxfree, pxlast, pxnext

Dynamic C Functions rabbit.com 403

http://www.rabbit.com

pxprev_ fast

xmem long pxprev_fast(Pool t * p, long e);

DESCRIPTION

Get the previous allocated element in an xmem pool. The pool MUST be set to being a linked
pool using pool link (p, <non-zeros);otherwise, the results are undefined.

This is an assembler-only version of pxprev ().
*** Do _not_ call this function from C. ***
Registers

Parameters in IX, DE respectively
Trashes AF, HL
Return value in BCDE, carry flag

Example

1d ix,my pool

1d de, (current element)

1d bc, (current element+2)

lcall pxprev_fast

jr c,.no _more elems

; BCDE points to previously allocated element

PARAMETERS
P Pool handle structure, as previously passed to pool xinit (). Pass this
in IX register.
e Current element, address in BCDE register. See pxprev () for fuller de-

scription.

RETURN VALUE

C flag set: there are no more elements
C flag clear (NC): BCDE points to previous element

LIBRARY
POOL.LIB

SEE ALSO

pool xinit, pool link, pxalloc, pxprev

404 rabbit.com Dynamic C Functions

http://www.rabbit.com

gd error

char qd_error(int channel);

DESCRIPTION

Gets the current error bits for that qd channel. This function is intended to be used with the Rab-
bit 3000 and Rabbit 4000.

PARAMETERS

channel The channel to read errors from (currently 1 or 2).
RETURN VALUE

Set of error flags, that can be decoded with the following masks:

QD OVERFLOW 0x01
QD UNDERFLOW 0x02

LIBRARY
OD.LIB (was in R3000.LIB prior to DC 10)

Dynamic C Functions rabbit.com 405

http://www.rabbit.com

qd init

void gd init(int iplevel);

DESCRIPTION

If your board has a Rabbit 3000A microprocessor installed, the quadrature decoder can be set
for 10 bit counter operation. For 10 bit operation, add the following macro at the top of your
application program.

#define

QD 10BIT OPERATION

If the above macro is not defined then the quadrature decoder defaults to 8 bit counter operation.
With the Rabbit 3000 processor you must use the default 8-bit operation; defining the 10-bit
macro will cause a compile time error.

Sample program Samples/Rabbit3000/QD Phase 10bit.c demonstrates the use

of the macro.

If your board has a Rabbit 4000 microprocessor installed, the quadrature decoder inputs must
be chosen with one of the following defines. Define only one per quadrature decoder.

#define
#define
#define

#define
#define
#define

QD1 USEPORTD
QD1 USEPORTEL
QD1 USEPORTEH

QD2 USEPORTD
QD2 USEPORTEL
QD2 USEPORTEH

use port D pins 1 and 0
use port E pins 1 and 0
use port E pins 5 and 4

use port D pins 3 and 2
use port E pins 3 and 2
use port E pins 7 and 6

If no macro is defined for a decoder, that decoder will be disabled.

PARAMETERS

iplevel

LIBRARY
QD.LIB (was in R3000.LIB prior to DC 10)

The interrupt priority for the ISR that handles the count overflow. This

should usually be 1.

406

rabbit.com

Dynamic C Functions

http://www.rabbit.com

gd read

long gd read(int channel);

DESCRIPTION

Reads the current quadrature decoder count. Since this function waits for a clear reading, it can
potentially block if there is enough flutter in the decoder count.

This function is intended to be used with the Rabbit 3000 and Rabbit 4000.
PARAMETERS

channel The channel to read (currently 1 or 2).

RETURN VALUE

Returns a signed long for the current count.

LIBRARY
QOD.LIB (was in R3000.LIB prior to DC 10)

gd zero
void gd zero(int channel);

DESCRIPTION
Sets the count for a channel to 0. This function is intended to be used with the Rabbit 3000 and
Rabbit 4000.

PARAMETERS
channel The channel to reset (currently 1 or 2)

LIBRARY

OD.LIB (was in R3000.LIB prior to DC 10)

Dynamic C Functions rabbit.com 407

http://www.rabbit.com

gsort

int gsort(char * base, unsigned n, unsigned s, int (*cmp) ());

DESCRIPTION

Quick sort with center pivot, stack control, and easy-to-change comparison method. This ver-
sion sorts fixed-length data items. It is ideal for integers, longs, floats and packed string data
without delimiters. Raw integers, longs, floats or strings may be sorted, however, the string sort

is not efficient.

PARAMETERS

base
n
s

cmp

RETURN VALUE
0 if the operation is successful.

LIBRARY
SYS.LIB

Base address of the raw string data.
Number of blocks to sort.
Number of bytes in each block.

User-supplied compare routine for two block pointers, p and g, that returns
an int with the same rules used by Unix strcmp (p, q) :

= 0: Blocks p and q are equal
<0:pislessthan g
> (: p is greater than g

Beware of using ordinary st rcmp () —it requires a null at the end of each
string.

EXAMPLE - Sorts an array of integers.

int mycmp (int *p, int *q){ return (*p - *q);}

const int g[10]
const int p[10]

main ()
int i;
gsort (p, 10,2, mycmp) ;

for(i=0;1i<10;++1i) printf("%d. %4, %d\n",i,plil,qli]);

}

{

= {12,1,3,-2,16,7,9,34,-90,10};
{12,1,3,-2,16,7,9,34,-90,10};

Output from the above sample program:

OV owJoubdwdhEKHoOo

-90,
-2,

34,

12
1

3
-2
16
7

9
34
-90
10

408

rabbit.com Dynamic C Functions

http://www.rabbit.com

rad

float rad(float x);

DESCRIPTION

Convert degrees (360 for one rotation) to radians (27 for a rotation).

PARAMETERS

x Degree value to convert.

RETURN VALUE

The radians equivalent of degree.

LIBRARY
SYS.LIB

SEE ALSO
deg

rand

float rand(wvoid);

DESCRIPTION
Returns a uniformly distributed random number in the range 0.0 < v < 1.0. Uses algorithm:
rand = (5 * rand) modulo 232

A default seed value is set on startup, but can be changed with the srand () function.
rand () is not reentrant.

RETURN VALUE

A uniformly distributed random number: 0.0 < v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO

randb, randg, srand

Dynamic C Functions rabbit.com 409

http://www.rabbit.com

randb

float randb(void);

DESCRIPTION

Uses algorithm:

rand = (5 * rand) modulo 232

A default seed value is set on startup, but can be changed with the srand () function.
randb () is not reentrant.

RETURN VALUE

Returns a uniformly distributed random number: -1.0 < v < 1.0.

LIBRARY
MATH.LIB

SEE ALSO

rand, randg, srand

randg

float randg(void);

DESCRIPTION
Returns a gaussian-distributed random number in the range -16.0 < v < 16.0 with a standard de-
viation of approximately 2.6. The distribution is made by adding 16 random numbers (see
rand ()). This function is not task reentrant.

RETURN VALUE

A gaussian distributed random number: -16.0 < v <16.0.

LIBRARY
MATH.LIB

SEE ALSO

rand, randb, srand

410 rabbit.com Dynamic C Functions

http://www.rabbit.com

RdPortE

int RAPortE(unsigned int port);

DESCRIPTION

Reads an external I/O register specified by the argument.

PARAMETERS

port Address of external parallel port data register.

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port specified by
the argument. Upper byte contains zero.

LIBRARY
SYSIO.LIB

SEE ALSO

RdPortI, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortE,
BitWrPortE

Dynamic C Functions rabbit.com 41

http://www.rabbit.com

RdPortI

int RdPortI(int port);

DESCRIPTION
Reads an internal I/O port specified by the argument (use RAPortE () for external port).

All of the Rabbit internal registers have predefined macros corresponding to the name of the
register. PADR is #defined to be 0x30, etc.

PARAMETERS

port Address of internal I/O port

RETURN VALUE

Returns an integer, the lower 8 bits of which contain the result of reading the port specified by
the argument. Upper byte contains zero.

LIBRARY
SYSTIO.LIB

SEE ALSO

RdPortE, BitRdPortI, WrPortI, BitWrPortI, BitRdPortE, WrPortE,
BitWrPortE

412 rabbit.com Dynamic C Functions

http://www.rabbit.com

ReadCompressedFile

int ReadCompressedFile(ZFILE * input, UBYTE * buf, int lenx);

DESCRIPTION

This function decompresses a compressed file (input ZFILE, opened with
OpenInputCompressedFile ())using the LZ compression algorithm on-the-fly, placing
a number of bytes (1Lenx) into a user-specified buffer (buf).

PARAMETERS
input Input bit file.
buf Output buffer.
lenx Number of bytes to read. This can be increased to get more throughput or

decreased to free up variable space.

RETURN VALUE
Number of bytes read

LIBRARY
LZSS.LIB

Dynamic C Functions rabbit.com 413

http://www.rabbit.com

read rtc

unsigned long read rtc(void);

DESCRIPTION

Reads seconds (32 bits) directly from the Real-time Clock (RTC). Use with caution! In most
cases use long variable SEC_ TIMER, which contains the same result, unless the RTC has been
changed since the start of the program.

If you are running the processor off the 32 kHz crystal and using a Dynamic C version prior to
7.30,use read_rtc_32kHz () instead of read rtc (). Starting with DC 7.30,

read rtc 32kHz () is deprecated because it is no longer necessary. Programmers should
only use read rtc().

RETURN VALUE
Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK.LIB

SEE ALSO

write rtc

read rtc 32kHz

unsigned long read rtc 32kHz (void);

DESCRIPTION
Reads the real-time clock directly when the Rabbit processor is running off the 32 kHz oscilla-
tor. See read rtc for more details.

RETURN VALUE
Time in seconds since January 1, 1980 (if RTC set correctly).

LIBRARY
RTCLOCK.LIB

414 rabbit.com Dynamic C Functions

http://www.rabbit.com

readUserBlock

int readUserBlock(void * dest, unsigned addr, unsigned numbytes);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a buffer in root memory.
Please note that portions of the User block may be used by the BIOS for your board to store
values. For example, any board with an A to D converter will require the BIOS to write
calibration constants to the User block. For some versions of the BL2000 and the BL2100 this
memory area is 0x1C00 to Ox1FFF. See the user’s manual for your particular board for more
information before overwriting any part of the User block. Also, see the Rabbit Microprocessor
Designer’s Handbook for more information on the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
readUserBlockArray () should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flash is in
use by another device. However, if using uC/OS-Il and SPI USE UCOS_ MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SPI MUTEX ERROR will occur.
See the description for rcm43 InitUCOSMutex () for more information on using
pC/OS-Iland SPI USE UCOS MUTEX.

PARAMETERS
dest Pointer to destination to copy data to.
addr Address offset in User block to read from.
numbytes Number of bytes to copy.

RETURN VALUE

0: Success
-1: Invalid address or range
-2: No valid ID block found (block version 3 or later)

The return values below are applicable only if SPI USE UCOS_ MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlock, readUserBlockArray

Dynamic C Functions rabbit.com 415

http://www.rabbit.com

readUserBlockArray

int readUserBlockArray(void * dests[], unsigned numbytes[], int
numdests, unsigned addr);

DESCRIPTION

Reads a number of bytes from the User block on the primary flash to a set of buffers in root
memory. This function is usually used as the inverse function of
writeUserBlockArray ().

This function was introduced in Dynamic C version 7.30.

Note: Portions of the User block may be used by the BIOS to store values such as cali-
bration constants. See the manual for your particular board for more information before
overwriting any part of the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
readUserBlockArray () should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flash is in
use by another device. However, if using uC/OS-Il and SPI USE UCOS_ MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SPI MUTEX ERROR will occur.
See the description for rcm43 InitUCOSMutex () for more information on using
uC/OS-Iland SPI_USE UCOS MUTEX.

PARAMETERS
dests Pointer to array of destinations to copy data to.
numbytes Array of numbers of bytes to be written to each destination.
numdests Number of destinations.
addr Address offset in User block to read from.

RETURN VALUE

0: Success
-1: Invalid address or range
-2: No valid System ID block found (block version 3 or later)
The return values below are applicable only if SPI USE UCOS MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO

writeUserBlockArray, readUserBlock

416 rabbit.com Dynamic C Functions

http://www.rabbit.com

res

void res(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Clears specified bit at memory address to 0. Bit may be
from 0 to 31. This is equivalent to the following expression, but more efficient:

* (long *)address &= ~ (1L << bit)

PARAMETERS
address
bit

LIBRARY

UTIL.LIB

SEE ALSO
RES

Address of byte containing bits 7-0.

Bit location where 0 represents the least significant bit.

RES

void RES(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Clears specified bit at memory address to 0. bit may
be from O to 31. This is equivalent to the following expression, but more efficient:

* (long *)address &= ~ (1L << bit)

PARAMETERS
address
bit

LIBRARY

UTIL.LIB

SEE ALSO

res

Address of byte containing bits 7-0.

Bit location where 0 represents the least significant bit.

Dynamic C Functions

rabbit.com

417

http://www.rabbit.com

ResetErrorLog

void ResetErrorLog(void);

DESCRIPTION

This function resets the exception and restart type counts in the error log buffer header. This
function is not called by default from anywhere. It should be used to initialized the error log
when a board is programmed by means other than Dynamic C, cloning, the Rabbit Field Utility
(RFU), or a service processor. For example, if boards are mass produced with pre-programmed
flash chips, then the test program that runs on the boards should call this function.

LIBRARY
ERRORS.LIB

root2vram

int root2vram(void * src, int start, int length);

DESCRIPTION

This function copies data to the VBAT RAM. Tamper detection on the Rabbit 4000 erases the
VBAT RAM with any attempt to enter bootstrap mode.

PARAMETERS
src The address to the data in root to be copied to vbat ram.
start The start location within the VBAT RAM (0-31).
length The length of data to write to VBAT RAM. The length should be greater
than 0.
The parameters length + start should not exceed 32.
LIBRARY
VBAT.LIB
SEE ALSO
vram2root

418 rabbit.com Dynamic C Functions

http://www.rabbit.com

root2xmem

int root2xmem(unsigned long dest, void * src, unsigned len) ;

DESCRIPTION

Stores 1en characters from logical address src to physical address dest.

PARAMETERS
dest Physical address.
src Logical address.
len Numbers of bytes.

RETURN VALUE

0: Success.
-1: Attempt to write flash memory area, nothing written.
-2: Source not all in root.

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, xmem2root

Dynamic C Functions rabbit.com 419

http://www.rabbit.com

rtc_timezone

int rtc_timezone(long * seconds, char * tzname);

DESCRIPTION

This function returns the timezone offset as known by the library. The timezone is obtained from
the following sources, in order of preference:

1. The DHCP server. This can only be used if the TCP/IP stack is in use, and USE_DHCP is

defined.
2. The TIMEZONE macro. This should be defined by the program to an _hour_ offset - may be
floating point.
PARAMETERS
seconds Pointer to result longword. This will be set to the number of seconds offset
from Coordinated Universal Time (UTC). The value will be negative for
west; positive for east of Greenwich.
tzname Ifnull, no timezone name is returned. Otherwise, this must point to a buffer

of at least 7 bytes. The buffer is set to a null-terminated string of between
0 and 6 characters in length, according to the value of the TZNAME macro.
If TZNAME is not defined, then the returned string is zero length ("").

RETURN VALUE

0: timezone obtained from DHCP.
-1: timezone obtained from TIMEZONE macro. The value of this macro (which may be int,
float or a variable name) is multiplied by 3600 to form the return value.
- 2: timezone is zero since the TIMEZONE macro was not defined.

LIBRARY
RTCLOCK.LIB

420 rabbit.com Dynamic C Functions

http://www.rabbit.com

runwatch

void runwatch(void);

DESCRIPTION

Runs and updates watch expressions if Dynamic C has requested it with a Ctrl-U. Should be
called periodically in user program.

LIBRARY
SYS.LIB

sdspi debounce

int sdspi_debounce(sd_device * sd);

DESCRIPTION

This function waits for and debounces the card insertion switch. When it returns True (1), then
a card is fully inserted.

PARAMETER

sd The device structure for the SD card.

RETURN VALUE

1: Success, card fully inserted
0: No card present

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com

421

http://www.rabbit.com

sdspi get csd

int sdspi_get csd(sd_device * sd);

DESCRIPTION

This function is called to execute protocol command 9 to retrieve the SD card's Card Specific
Data (CSD) and store it in the respective SD driver configuration object. The CSD data is used
to determine the SD card's physical storage and timing attributes.

PARAMETERS
sd The device structure for the SD card.

RETURN VALUE

0: Success

-EIO: /O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY

SDFLASH.LIB

422 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi get scr

int sdspi_get_ scr(sd_device * sd);

DESCRIPTION

This function executes application specific command 51 to retrieve the SD card's Configuration
Register (SCR) and store it in the respective SD driver configuration object. The SCR data is
used to identify the SD card's physical interface version and security version. It also contains
erase state (all 0's or 1's) and supported bus widths.

PARAMETERS
sd The device structure for the SD card.

RETURN VALUE

0: Success

-EIO0: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY

SDFLASH.LIB

Dynamic C Functions rabbit.com 423

http://www.rabbit.com

sdspi getSectorCount

long sdspi getSectorCount(sd device * dev);

DESCRIPTION

Return number of usable 512 byte sectors on an SD card.
PARAMETER
dev Pointer to sd_device struct for initialized flash device.

RETURN VALUE

Number of sectors

LIBRARY
SDFLASH.LIB

sdspi get status reg

int sdspi get status reg(sd device *sd, int * status);

DESCRIPTION
This function is called to execute protocol command 13 to retrieve the status register value of
the SD card.
PARAMETERS
sd Pointer to the device structure for the SD card.
status Pointer to variable that returns the status.

RETURN VALUE

0: Success, Card status placed in status
-EIO: /O error

-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

424 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi init card

int sdspi_init card(sd device * =d);

DESCRIPTION

Initializes the SD card pointed to by sd. Function executes protocol command “1” which clears
HCS bit and activates the card’s initialization sequence.

PARAMETERS
sd Pointer to sd_device structure for the SD card.

RETURN VALUE

0: Success

-EIO: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 425

http://www.rabbit.com

sdspi initDevice

int sdspi_ initDevice(int indx, sd dev interface * sd _dev);

DESCRIPTION

Initializes the SD card pointed to by sd_ dev and adds information about the cards interface to
the SD device array in the position pointed to by indx. Sets up the default block size of 512
bytes used by sector read/write functions. This function should be called before any calls to
other sdspi functions.

PARAMETERS
indx Index into the SD device array to add the card.
sd_dev Pointer to sd_dev_interface for the SD card.

RETURN VALUE

0: Success

-EIO: /O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: SPI port busy

LIBRARY
SDFLASH.LIB

426 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi isWriting

int sdspi_isWriting(sd device * dev);
DESCRIPTION
Returns 1 if the SD card is busy writing a sector.
PARAMETER
dev Pointer to initialized sd_device structure for the flash chip

RETURN VALUE
1: Busy
0: Ready, not currently writing

LIBRARY
SDFLASH.LIB

sdspi notbusy

int sdspi notbusy(int port);

DESCRIPTION

This function tests for a busy status from the SD card on the port given. It is assumed that the
card is already enabled.

PARAMETER

port The base address for the SD card's SPI port

RETURN VALUE

1: The card is not busy, write/erase has ended
0: The card is busy, write/erase in progress

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 427

http://www.rabbit.com

sdspi print dev

void sdspi print dev(sd_device * dev);
DESCRIPTION
Prints parameters from the SD device structure.
PARAMETER
dev Pointer to sd_ device structure of the SD card.

LIBRARY
SDFLASH.LIB

428 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi process command

int sdspi process command(sd device *sd, SD_CMD REPLY * cmd reply,
int mode);

DESCRIPTION

This function sends the command placed in the cmd_reply structure and retrieves a reply and
data (optional) as defined in the cmd_reply structure. Pointers to TX and RX buffers are re-
trieved from the cmd_reply structure and used for command transmission and reply/data re-
ception. Reply is parsed and placed in cmd_reply.reply. Errors encountered will give a
negative return value.

The SPI semaphore is obtained before the command is sent. The mode parameter controls
whether the semaphore will be released after command execution and reply/data reception. If
mode is zero, both semaphore and chip select are active on a successful return. An end com-
mand sequence and release of the semaphore must be handled by caller.

If mode is not 0, the semaphore will be released before returning. In addition, if mode is 2 then
an SD card reset is in progress. This enables the distinguishing of certain I/O error conditions
that would normally be grouped with the -EIO error code and instead return the - EAGAIN
error code, indicating reset retries should continue.

PARAMETER
sd Pointer to sd_device structure of the SD card.

cmd reply Pointer to cmd_reply structure, which contains:

cmd - command to be executed

argument - arguments for the command
reply - storage for command reply
reply_size - size in bytes of expected reply
data_size - size in bytes of expected data
tx_buffer - pointer to TX buffer to use
rx_buffer - pointer to RX buffer to use

mode One of the following:

0 = SPI port semaphore should be retained.
1 = If SPI port to be released before return.

2 = Attempting SD card reset, otherwise same as mode “1”.
(Enables -EAGAIN return value.)

Dynamic C Functions rabbit.com 429

http://www.rabbit.com

sdspi process command (cont’d)

RETURN VALUE

0: Success

-EIO: /O error

-EAGAIN: Allowable I/O error during card reset
-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi read sector

int sdspi read sector(sd device * sd, unsigned long sector number,
void * data buffer);

DESCRIPTION
This function is called to execute protocol command 17 to read a 512 byte block of data from
the SD card.

PARAMETER
sd Pointer to sd_device structure of the SD card.

sector number The sector number to read.
data buffer Pointer to a buffer for the 512 bytes read.

RETURN VALUE

0: Success

-EIO0: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

430 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi reset card

int sdspi_reset_card(sd_device * sd);

DESCRIPTION

Resets the SD card pointed to by sd. Function executes protocol command 0 to force the card
to Idle mode. This command is sent multiple times to reset the SD card.

PARAMETER
sd Pointer to sd_device structure of the SD card.

RETURN VALUE

0: Success

-EIO: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 431

http://www.rabbit.com

sdspi sendingAP

int sdspi_sendingAP(sd device * =d);

DESCRIPTION
Sends AP command 55 to set Alternate Command mode on the next command sent to the card.
This function does not release the port sharing semaphore unless an error is encountered.
PARAMETER

sd Pointer to sd_device structure of the SD card.

RETURN VALUE

0: Success

-EI0:1/O error

-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

sdspi setLED

void sdspi setLED(sd device * sd, char state);

DESCRIPTION

This function sets the LED for the given SD card based on state. If state is 0, the LED is turned
off. If state is not zero, the LED is turned on.

PARAMETER
sd Pointer to sd_device structure of the SD card.
state The state to set the LED to: 0 = Off and Non-zero = On
LIBRARY

SDFLASH.LIB

432 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi set block length

int sdspi_set block length(sd device * sd, int block length);

DESCRIPTION

This function executes protocol command 16 to set the block length for the SD card. The default
block length for SD cards is 512 bytes. Please note that sdspi write sector () and
sdspi read sector () work on 512 byte blocks only. If you change the block size, these
functions will need to be modified, or you will need to execute commands directly through
sdspi process command () and internal write block and read block functions.

PARAMETER
sd Pointer to device structure of the SD card.
block length The block size in bytes for the SD card.

RETURN VALUE

0: Success

-EIO: I/O error

-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy

LIBRARY
SDFLASH.LIB

Dynamic C Functions rabbit.com 433

http://www.rabbit.com

sdspi WriteContinue

int sdspi WriteContinue(sd_device * sd);

DESCRIPTION

This function completes the previously started write command to the SD card when non-block-
ing mode is enabled. It looks for the end of the busy signal from the card, then strobes the chip
select. This function should be called repeatedly until the -EBUSY code is not returned, at
which point the SPI port is freed. There is a timeout mechanism for the busy signal. If exceeded,
the port is freed and the -EIO error code is returned.

PARAMETERS

sd The device structure for the SD card.

RETURN VALUE

0: Success
-EIO: I/O error or timeout
-EBUSY: SD card is busy with write operation; call sdspi WriteContinue () again

LIBRARY
SDFLASH.LIB

434 rabbit.com Dynamic C Functions

http://www.rabbit.com

sdspi write sector

int sdspi_ write sector(sd device * sd, unsigned long sector_ number,
char * data buffer);

DESCRIPTION
This function is called to execute protocol command 24 to write a 512 byte block of data to the
SD card.

PARAMETER
sd Pointer to device structure of the SD card.

sector number The sector number to write.
data buffer Pointer to a buffer of 512 bytes to write.

RETURN VALUE
0: Success
-EIO: I/O error
-EACCES: Write protected block, no write access
-EINVAL: Invalid parameter given
-ENOMEDIUM: No SD card in socket
-ESHAREDBUSY: Shared SPI port busy
-EBUSY: SD card is busy with write operation; call sdspi WriteContinue () to com-
plete (only when SD_NON BLOCK is defined)

LIBRARY

SDFLASH.LIB

Dynamic C Functions rabbit.com 435

http://www.rabbit.com

servo alloc table

void servo_alloc_table(int which, int entries);

DESCRIPTION
Allocate an xmem data area for servo statistics collection. This function should be called once
only (for each servo) at application startup time.

PARAMETERS
which Servo (0 or 1)
entries Number of entries to allocate. Each entry is 8 bytes, and stores 4 integer
values. The maximum value for this parameter is 8190.
LIBRARY
SERVO.LIB
SEE ALSO

servo_graph, servo_read table, servo_stats reset

servo closedloop

void servo_closedloop(int which, int reset);

DESCRIPTION
Run specified servo in closed-loop (PID) mode.

PARAMETERS
which Servo (0 or 1).
reset Whether to reset the current command list. The command list executes
even while in open loop mode (although it will have no visible effect in that
mode). If reset is non-zero, then the command list will be reset to empty
and the motor will halt at the current position.
LIBRARY
SERVO.LIB
SEE ALSO

servo_openloop, servo torgue

436 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo _disable 0

void servo disable 0(void);

DESCRIPTION

Disable drive to the first servo motor. This function only works if an auxiliary control signal is
connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO ENABLE_PORT 0 PGDR
#define SERVO ENABLE_ PORTSHADOW 0 PGDRShadow
#define SERVO ENABLE PIN_0 6

and, optionally,

#define SERVO_ENABLE DDR 0 PGDDR
#define SERVO ENABLE DDRSHADOW 0 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 0

This function is limited to toggling the output pin. If enabling or disabling the servo motor re-
quires more complicated actions, you can substitute your own function by defining

#define SERVO DISABLE 0 yyyy

where yyyy is the name of your own function (which is assumed to take no parameters and have
no return value)

LIBRARY
SERVO.LIB

SEE ALSO

servo_enable 0

Dynamic C Functions rabbit.com 437

http://www.rabbit.com

servo_disable 1

void servo disable 1(void);

DESCRIPTION

Disable drive to the second servo motor. This function only works if an auxiliary control signal
is connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO ENABLE_ PORT 1 PGDR
#define SERVO ENABLE PORTSHADOW 1 PGDRShadow
#define SERVO ENABLE PIN 1 7

and, optionally,

#define SERVO_ ENABLE DDR 1 PGDDR
#define SERVO ENABLE DDRSHADOW 1 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 1

This function is limited to toggling the output pin. If enabling or disabling the servo motor re-
quires more complicated actions, you can substitute your own function by defining

#define SERVO DISABLE 1 yyyy

where yyyy is the name of your own function (which is assumed to take no parameters and have
no return value)

LIBRARY
SERVO.LIB

SEE ALSO

servo_enable 1

438 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_enable 0

void servo enable 0(void);

DESCRIPTION

Enable drive to the first servo motor. This function only works if an auxiliary control signal is
connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO ENABLE_ PORT 0 PGDR
#define SERVO ENABLE PORTSHADOW 0 PGDRShadow
#define SERVO ENABLE PIN 0 6

and, optionally,

#define SERVO_ ENABLE DDR_0 PGDDR
#define SERVO ENABLE DDRSHADOW 0 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 0

This function is limited to toggling the output pin high or low. If enabling or disabling the servo
motor requires more complicated actions, you can substitute your own function by defining

#define SERVO ENABLE 0 xxxX

where xxxx is the name of your own function (which is assumed to take no parameters and have
no return value).

LIBRARY
SERVO.LIB

SEE ALSO

servo_disable 0

Dynamic C Functions rabbit.com 439

http://www.rabbit.com

servo_enable 1

void servo enable 1(void);

DESCRIPTION
Enable drive to the second servo motor. This function only works if an auxiliary control signal
is connected to the motor driver. The I/O pin used for this function is specified by the macros:

#define SERVO ENABLE_ PORT 1 PGDR
#define SERVO ENABLE PORTSHADOW 1 PGDRShadow
#define SERVO ENABLE PIN 1 7

and, optionally,

#define SERVO ENABLE DDR_1 PGDDR
#define SERVO ENABLE DDRSHADOW 1 PGDDRShadow
#define SERVO ENABLE ACTIVEHIGH 1

This function is limited to toggling the output pin high or low. If enabling or disabling the servo
motor requires more complicated actions, you can substitute your own function by defining

#define SERVO ENABLE 1 xxxXx

where xxxx is the name of your own function (which is assumed to take no parameters and have
no return value).

LIBRARY
SERVO.LIB

SEE ALSO

servo_disable 1

440 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_gear

void servo_gear(int count0, int countl, int slave0O, int slavel);

DESCRIPTION

NOTE: this function is currently not efficient enough for production use (owing to use of long
multiplication and division). It is provided as an example of the use of callbacks from the ISR.

If two servos are in use, couple or cross-couple their positioning. This only works if
NUM_SERVOS is 2, and both servos are in closed loop mode.

There are four possible sub-modes of operation, which depend on the slave(/1 parameters.

slave0 slave1 Operation

Non-gear mode: neither servo is slaved. This is the normal,
default, mode.

Second servo is slaved from first servo. For every 'count('
0 1 increments of the first servo's encoder, the second servo will be
moved 'countl' increments.

First servo is slaved from second servo. For every 'count1’
1 0 increments of the second servo's encoder, the first servo will be
moved 'count(' increments.

Both servos cross-coupled. Movement will only result from an
1 1 externally applied torque. This is a true simulation of
mechanical gearing.

Call this function with count0 or countl zero, or both slave0 and slavel zero, to exit from gear
mode. When a servo that was slaved is set to normal mode, its velocity is set to zero.

PARAMETERS
count0 Encoder increment for the first servo which results from count! increments
of the second servo.
countl Encoder increment for the second servo which results from countO incre-

ments of the first servo.

Together, countO and countl determine the gearing ratio. Neither value should be set to a mag-
nitude greater than about 500, to avoid internal arithmetic overflow. In any gear mode, the total
movement of either servo should be limited to less than about 2M counts in either direction from
the point at which gear mode was set. If a smaller range of movement is acceptable, then the
maximum of either count parameter may be increased proportionally. The value of
count(O/count] or countl/count0 should not have a magnitude greater than about 10 to avoid en-
coder quantization problems, especially in cross-coupled mode.

Dynamic C Functions rabbit.com 441

http://www.rabbit.com

servo _gear (cont’d)

slave0 1 if first servo slaved to second, else zero.
slavel 1 if second servo slaved to first, else zero.
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo_torque

442 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_graph

int servo graph(int which, word start, word nlines, word samples,
word what, int low, int high);

DESCRIPTION

Draw ASCIlI-art graph of servo response. This is primarily intended for debugging. It should be
called after resetting the sample collection table using servo_stats reset (), then exe-
cuting a movement whose response is to be graphed.

PARAMETERS

which Servo (0 or 1)

start Starting sample number

nlines Number of lines (sample bins) in graph - vertical axis

samples Number of samples to cover (should be multiple of nlines)

what Which statistic to print: 0 is for error; 1 for error integral; 2 for error rate
(differential), 3 for PWM output setting. These may be customized to have
different meanings

low Low range of horizontal axis

high High range of horizontal axis

RETURN VALUE
0: OK
-1: error

LIBRARY
SERVO.LIB

SEE ALSO

servo_alloc_table, servo read table, servo stats reset

Dynamic C Functions rabbit.com 443

http://www.rabbit.com

servo_init

void servo init(void);

DESCRIPTION

This function must be called once at the beginning of application code to initialize the servo li-
brary.

LIBRARY
SERVO.LIB

SEE ALSO

servo_stats_reset, servo_alloc_table, servo_set coeffs,
servo_enable 0

servo millirpm2vcmd

long servo millirpm2vemd(int which, long millirpm) ;

DESCRIPTION
Convert 1/1000 RPM units to velocity command value. Basic formula is:

SERVO_COUNT_ PER_REV_ n - millirpm - 65536

vemd =
60000 - SERVO_LOOP RATE HZ

Floating point is used to retain 24 bit precision.

PARAMETERS
which Servo (0 or 1).
millirpm Input in units of 1/1000 RPM.

RETURN VALUE

Output in units suitable for command velocity setting i.e units of 1/65536 encoder counts per
ISR execution (sample).

LIBRARY
SERVO.LIB

SEE ALSO

servo_move_to, servo_ set vel, servo set pos

444 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo _move to

int servo move to(int which, long pos, long ticks, long accel ticks,
long final v);

DESCRIPTION

Move to new position, pos. Assumes current position is “cmd” and current velocity is “vemd”
(with the values of these read from the control structure at beginning of routine).

Each "tick" represents the time interval between loop updates. This routine measures time in-
tervals in units of ticks.

accel_ticks (<= ticks) is the number of ticks allocated to acceleration/deceleration phase of
movement. The remaining part of the movement is performed at constant velocity. Acceleration
and deceleration are computed to be of the same magnitude at beginning and end of motion (but
may be opposite signs). final_v is the velocity to be achieved at end of movement. This routine
returns as soon as the necessary command list is installed for execution by the ISR. The move-
ment will not be completed until “ticks” ISR executions.

NB: if the average velocity (vt) required to complete the movement is greater than +/-16k counts
per tick, then the movement is stretched to a longer time interval so as to make the peak velocity
equal to the +/- 8k counts/tick (which is higher than any physical motor can follow). accel_ticks
is set to 16384 if it is over that (since rounding errors can accumulate over long periods of low
acceleration).

If this routine is called again before the previous motion is completed, then the previous motion
will be overridden by the new motion. This routine uses floating point, since the mathematics
are quite complex. It takes several milliseconds to execute, so should not be called to perform
motions which complete in less than, say, 50ms.

This routine does not attempt to control rate of change of acceleration ("jerk" or d*3x/dt"3). It
approximates the required movement profile as parabolic (constant acceleration) and linear
(constant velocity) segments.

PARAMETERS
which Servo (0 or 1).
pos Position to be achieved at end of movement.
ticks Number of ISR executions (loop update rate) over which to complete the

movement. If less than 1, it is set to 1.

accel ticks Number ofticks over which acceleration is to be applied. The remainder of
the interval, ticks - accel_ticks, is performed at constant velocity. If greater
than "ticks", it is set equal to "ticks".

final v Final velocity to be achieved at end of movement.

Dynamic C Functions rabbit.com 445

http://www.rabbit.com

servo move to (cont’d)

RETURN VALUE

0: OK.
1: computed velocity is "extremely high": time interval stretched to make velocity fit within al-
lowable fixed-point limits (i.e. 8192 encoder counts per sample).

LIBRARY
SERVO.LIB

SEE ALSO

servo_set vel, servo_set pos, servo millirpm2vcmd

servo_ openloop

void servo openloop(int which, word pwm) ;

DESCRIPTION

Run specified servo in open-loop mode (no PID control). Note that this bypasses dynamic cur-
rent-limiting (if any defined) so should be used with caution.

PARAMETERS
which Servo (0 or 1).
pwm Output PWM setting (0-1024). 0 indicates maximum reverse speed, 1024
is maximum forward speed. 512 is nominally zero speed (but this depends
on amplifier offset).
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo_torque

446 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo _qgd zero 0

void servo gd zero 0(void);

DESCRIPTION

Reset the first servo encoder reading to zero. The servo motor is not moved; only the notion of
the current position is reset to zero. This should only be called when the servo is in open loop
mode.

LIBRARY
SERVO.LIB

SEE ALSO

servo_gd zero 1

servo qd zero 1

void servo gd zero 1 (void ;)

DESCRIPTION

Reset the second servo encoder reading to zero. The servo motor is not moved; only the notion
of the current position is reset to zero. This should only be called when the servo is in open loop
mode.

LIBRARY
SERVO.LIB

SEE ALSO

servo_gd zero 0

Dynamic C Functions rabbit.com 447

http://www.rabbit.com

servo read table

int servo_read table(int which, word entry, word nent, int datal[l2]);

DESCRIPTION

Read one or more table entries, returning average, max and min of all samples in the specified
group starting at entry, for nent samples.

PARAMETERS
which Servo (0 or 1)
entry First sample number
nent Number of entries starting at "entry"
datal[1l2] Returned data: 3 sets of 4 contiguous entries. The first set (data[0]..data[3])

contains the average; the second set (data[4]..data[7]) contains the maxi-
mum; and the last set (data[8]..data[11]) contains the minimum. The ele-
ments of each set correspond with the table data: the first element is the
instantaneous error; the second is the error integral; the third is the error
rate; and the 4th is the PWM output. These may be customized to have dif-
ferent meanings.

RETURN VALUE
0: OK

1: no such entry or entries.

LIBRARY
SERVO.LIB

SEE ALSO

servo_alloc_table, servo_graph, servo stats reset

448 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo set coeffs

void servo set coeffs(int which, int prop, int integral, int diff);

DESCRIPTION

Set the PID closed loop control coefficients. The normal sign for all coefficients should be pos-
itive in order to implement a stable control loop. See Technical Note 233 for details.

PARAMETERS
which Servo (0 or 1)
prop Proportional coefficient
integral Integral ("reset") coefficient
diff Derivative ("rate") coefficient
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo_openloop

Dynamic C Functions rabbit.com 449

http://www.rabbit.com

servo_ set pos

void servo set pos(int which, long pos, long vel);

DESCRIPTION

Move the specified servo motor to a specified position and set the specified velocity at that po-
sition. This cancels any move which is currently in effect.

PARAMETERS
which Servo (0 or 1)
pos Position, as an encoder count
vel Velocity, in units of encoder counts per loop update interval, times 65536.
You can convert RPM to a suitable velocity command using
servo _millirpm2vemd ().
LIBRARY
SERVO.LIB
SEE ALSO

servo_move to, servo_set vel, servo millirpm2vcmd

450 rabbit.com Dynamic C Functions

http://www.rabbit.com

servo_set vel

void servo_set vel(int which, long vel);

DESCRIPTION
Move the specified servo motor at a constant velocity. This cancels any move that is currently
in effect.
PARAMETERS
which Servo (0 or 1).
vel Velocity, in units of encoder counts per loop update interval, times 65536.
You can convert RPM to a suitable velocity command using
servo_millirpm2vemd().
LIBRARY
SERVO.LIB
SEE ALSO

servo_move to, servo_set pos, servo millirpm2vcmd

servo stats reset

void servo stats reset(int which);

DESCRIPTION

Reset the statistics table. This is used immediately prior to a command movement, so that the

table is filled with the results of the movement command. Once reset, one table row is filled in
for each execution of the update loop (ISR driven). This continues until the table is full, or it is
reset again.

PARAMETER

which Servo (0 or 1)

LIBRARY
SERVO.LIB

SEE ALSO

servo_graph, servo_read table

Dynamic C Functions rabbit.com 451

http://www.rabbit.com

servo_torque

void servo torque(int which, int torque);

DESCRIPTION

Run specified servo in open loop controlled torque mode. The torque is limited by the dynamic
current limit feature, if available.

PARAMETERS
which Servo (0 or 1)
torque Amount of torque expressed as a fraction of the maximum permissible
torque, times 10,000. For example, to set the torque to 1/10 the maximum
value in the reverse direction, call servo_torque (0, -1000).
LIBRARY
SERVO.LIB
SEE ALSO

servo_closedloop, servo_openloop

452 rabbit.com Dynamic C Functions

http://www.rabbit.com

serCheckParity

int serCheckParity(char rx byte, char parity);

DESCRIPTION

This function is different from the other serial routines in that it does not specify a particular
serial port. This function takes any 8-bit character and tests it for correct parity. It will return
true if the parity of rx byte matches the parity specified. This function is useful for checking
individual characters when using a 7-bit data protocol.

PARAMETERS
rx byte The 8 bit character being tested for parity.
parity The character ‘O’ for odd parity, or the character ‘E’ for even parity.

RETURN VALUE

1: Parity of the byte being tested matches the parity supplied as an argument.
0: Parity of the byte does not match.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com

453

http://www.rabbit.com

serXclose

void serXclose(); /* where X is A-F */

DESCRIPTION

Disables serial port X. This function is non-reentrant.

The functions serEclose () and serFclose () may be used with the Rabbit 3000 and
Rabbit 4000.

LIBRARY
RS232.LIB

serXdatabits

void serXdatabits (state); /* where X is A-F */

DESCRIPTION

Sets the number of data bits in the serial format for this channel. Currently seven or eight bit
modes are supported. A call to serXopen () must be made before calling this function. This
function is non-reentrant.

The functions serEdatabits () and serFdatabits () may be used with the Rabbit
3000 and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXdatabits(int port, ...), where “port” is one of the macros
SER_PORT A through SER_PORT F.

PARAMETERS
state An integer indicating what bit mode to use. It is best to use one of the mac-
ros provided for this:
* PARAM 7BIT - Configures serial port to use 7 bit data.
* PARAM 8BIT - Configures serial port to use 8 bit data (default con-
dition).
LIBRARY
RS232.LIB

454 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXdmaOff

int serXdmaOff(void); /* where X is A-F */

DESCRIPTION

Stops DMA transfers and unallocates the channels. Restarts the serial interrupt capability.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the function
prototype is: serXdmaOff(int port), where “port” is one of the macros SER_ PORT_ A
through SER_PORT F.

RETURN VALUE

0: Success
DMA Error codes: Error

LIBRARY
RS232.LIB

SEE ALSO

serXdmaOn

Dynamic C Functions rabbit.com

455

http://www.rabbit.com

serXdmaOn

int serXdmaOn(int tcmask, int rcmask); /* where X is A-F */

DESCRIPTION

Enables DMA for serial send and receive. This function should be called directly after
serXopen ().

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the function
prototype is: serXdmaOn(int port, ...), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

Important Flow Control Note:
Because the DMA flowcontrol uses the external request feature, only two serial ports can use
DMA flowcontrol at a time. For the CTS pin, one serial port can use PD2, PE2, or PE6, and the
other can use PD3, PE3 or PE7.

How DMA Serial Works:

DMA Transmit:

When a serial function is called to transmit data, a DMA transfer begins. The length of that
transfer is either the length requested, or the rest of the transmit buffer size from the current po-
sition. An interrupt is fired at the end of the transmit at which time another transmit is set up if
more data is ready to go.

DMA Receive:

When serXdmaOn () is called, a continuous chain of DMA transfers begins sending any data
received on the serial line to the circular buffer. With flowcontrol on, there is an interrupt after
each segment of the data transfer. At that point, if receiving another segment would overwrite
data, the RTSoff function is called.

For more information see the description at the beginning of RS232 . LIB.

PARAMETERS
tcmask Channel mask for DMA transmit. Use DMA CHANNEL ANY to choose
any available channel.
rcmask Channel mask for DMA receive. Use DMA CHANNEL_ANY to choose any

available channel.

RETURN VALUE

DMA error code or 0 for success

LIBRARY
RS232.LIB

SEE ALSO
serXdmaOff

456 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXflowcontrolOff

void serXflowcontrolOff(void); /* where X is A-F */

DESCRIPTION
Turns off hardware flow control for serial port X. A call to serXopen () must be made before
calling this function. This function is non-reentrant.

The functions serEflowcontrolOff () and serFflowcontrolOff () may be used
with the Rabbit 3000 and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXflowcontrolOff(int port), where “port” is one of the
macros SER_PORT_A through SER_PORT _F.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 457

http://www.rabbit.com

serXflowcontrolOn

void serXflowcontrolOn(void); /* where X is A-F */

DESCRIPTION

Turns on hardware flow control for channel X. This enables two digital lines that handle flow
control, CTS (clear to send) and RTS (ready to send). CTS is an input that will be pulled active
low by the other system when it is ready to receive data. The RTS signal is an output that the
system uses to indicate that it is ready to receive data; it is driven low when data can be received.
A call to serXopen () must be made before calling this function.

This function is non-reentrant.

The functions serEf lowcontrolOn () and serFflowcontrolOn () may be used with
the Rabbit 3000 and Rabbit 4000.

If pins for the flow control lines are not explicitly defined, defaults will be used and compiler
warnings will be issued. The locations of the flow control lines are specified using a set of 5

macros.
SERX_ RTS_ PORT Data register for the parallel port that the RTS line is on. e.g.
PCDR
SERA_RTS SHADOW Shadow register for the RTS line's parallel port. e.g. PCDRShad-
ow
SERA RTS BIT The bit number for the RTS line
SERA CTS_PORT Data register for the parallel port that the CTS line is on
SERA CTS BIT The bit number for the CTS line
LIBRARY
RS232.LIB

458 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXgetc

int serXgetc(void); /* where X is A-F */

DESCRIPTION
Get next available character from serial port X read buffer. This function is non-reentrant.

The functions serEgetc () and serFgetc () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXgetc(int port), where “port” is one of the macros
SER_PORT A through SER_PORT F.

RETURN VALUE

Success: the next character in the low byte, 0 in the high byte.
Failure: -1, which indicates either an empty or a locked receive buffer.

LIBRARY
RS232.LIB

EXAMPLE

// echoes characters
main() {
int c;
serRAopen (19200) ;
while (1) {
if ((c = serAgetc()) != -1) {
serAputc(c) ;
}
}

serAclose ()

Dynamic C Functions rabbit.com 459

http://www.rabbit.com

serXgetError

int serXgetError(void); /* where X is A-F */

DESCRIPTION

Returns a byte of error flags, with bits set for any errors that occurred since the last time this
function was called. Any bits set will be automatically cleared when this function is called, so
a particular error will only be reported once. This function is non-reentrant.

The flags are checked with bitmasks to determine which errors occurred. Error bitmasks:

e SER PARITY ERROR
e SER OVERRUN_ ERROR

The functions serEgetError () and serFgetError () may be used with the
Rabbit 3000 and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXgetError(int port), where “port” is one of the macros
SER_PORT_A through SER_PORT_F.

RETURN VALUE

The error flags byte.

LIBRARY
RS232.LIB

460 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXopen

int serXopen(long baud); /* where X is A-F */

DESCRIPTION

Opens serial port X. This function is non-reentrant.

The user must define the buffer sizes for each port being used with the buffer size macros
XINBUFSIZE and XOUTBUFSIZE. The values must be a power of 2 minus 1, e.g.

#define XINBUFSIZE 63
#define XOUTBUFSIZE 127

Defining the buffer sizes to 2™ - 1 makes the circular buffer operations very efficient. If a value
not equal to 2™- 1 is defined, a default of 31 is used and a compiler warning is given.

The functions serEopen () and serFopen () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: The alternate pins on parallel port D can be used for serial port B by defining
SERB_USEPORTD at the beginning of a program. See the section on parallel port D in
the Rabbit documentation for more detail on the alternate serial port pins.

For Rabbit 4000 users: To use DMA for transfers, call serXdmaOn () after this function.

PARAMETERS

baud Bits per second (bps) of data transfer. Note that the baud rate must be
greater than or equal to the peripheral clock frequency divided by 8192.

RETURN VALUE

1: The Rabbit's bps setting is within 5% of the input baud.
0: The Rabbit's bps setting differs by more than 5% of the input baud.

LIBRARY
RS232.LIB

SEE ALSO

serXgetc, serXpeek, serXputs, serXwrite, cof_sengetc,
cof_ serXgets, cof serXread, cof serXputc, cof serXputs,
cof serXwrite, serXclose

Dynamic C Functions rabbit.com 461

http://www.rabbit.com

serXparity

void serXparity(int parity mode); /* where X is A-F */

DESCRIPTION

Sets parity mode for channel X. A call to serXopen () must be made before calling this func-
tion.

Parity generation for 8-bit data can be unusually slow due to the current method for generating
high 9th bits. Whenever a 9th high bit is needed, the UART is disabled for approximately 10
baud times to create a long stop bit that should be recognized by the receiver as a high 9th bit.

The long delay is imposed because we are using the serial port itself to handle timing for the
delay. Creating a shorter delay would the require use of some other timer resource.

This function is non-reentrant.

The functions serEparity () and serFparity () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXparity(int port, ...), where “port” is one of the macros
SER_PORT A through SER PORT _F.

PARAMETERS

parity mode An integer indicating what parity mode to use. It is best to use one of the
macros provided:

* PARAM NOPARITY - Disables parity handling (default).

* PARAM OPARITY - Odd parity; parity bit set to “0” if odd number
of 1’s in data bits.

* PARAM EPARITY - Even parity; parity bit set to “1” if even num-
ber of 1’s in data bits.

* PARAM MPARITY - Mark parity; parity bit always set to logical 1.
(Rabbit 4000 only)

* PARAM SPARITY - Space parity; parity bit always set to logical 0.
(Rabbit 4000 only)

* PARAM 2STOP - 2 stop bits.

From a logical standpoint, the first three of these PARAM macros cannot
be combined, but even PARAM 2STOP must stand alone due to limita-
tions in the UART hardware that will not allow parity bits and extra stop
bits.

LIBRARY
RS232.LIB

462 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXpeek

int serXpeek(void); /* where X is A-F */

DESCRIPTION

Returns first character in input buffer X, without removing it from the buffer. This function is
non-reentrant.

The functions serEpeek () and serFpeek () may be used with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXpeek(int port), where “port” is one of the macros
SER_PORT A through SER PORT _F.

RETURN VALUE

An integer with first character in buffer in the low byte.
-1 if the buffer is empty.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 463

http://www.rabbit.com

serXputc

int serXputc(char ¢); /* where X is A-F */

DESCRIPTION

Writes a character to serial port X write buffer. This function is non-reentrant.

The functions serEputc () and serFputc () may be used with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXputc(int port, ...), where “port” is one of the macros
SER_PORT A through SER_PORT F.

PARAMETERS

c Character to write to serial port X write buffer.

RETURN VALUE
0 if buffer locked or full, 1 if character sent.

LIBRARY
RS232.LIB

EXAMPLE

main() { // echoes characters
int c;
serRPopen (19200) ;
while (1) {
if ((c = serBAgetc()) != -1) {
serAputc (c) ;
}
}

serAclose () ;

464 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXputs

int serXputs(char * s); /* where X is A-F */

DESCRIPTION

Calls serXwrite (s, strlen(s)); does not write null terminator. This function is non-
reentrant.

The functions serEputs () and serFputs () may be used with the Rabbit 3000 and Rabbit
4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXputs(int port, ...), where “port” is one of the macros
SER_PORT A through SER PORT _F.

PARAMETERS
S Null terminated character string to write

RETURN VALUE

The number of characters actually sent from serial port X.

LIBRARY
RS232.LIB

EXAMPLE

// writes a null-terminated string of characters, repeatedly
main() {
const static char s[] = "Hello Rabbit";
serAopen(19200) ;
while (1) {
serAputs (s) ;
}

serAclose () ;

Dynamic C Functions rabbit.com 465

http://www.rabbit.com

serXrdFlush

void serXrdFlush(void); /* where X is A-F */

DESCRIPTION

Flushes serial port X input buffer. This function is non-reentrant.

The functions serErdFlush () and serFrdFlush () may be used with the Rabbit 3000
and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXrdFlush(int port), where “port” is one of the macros
SER_PORT A through SER_PORT F.

LIBRARY
RS232.LIB

serXrdFree

int serXrdFree(void); /* where X is A-F */

DESCRIPTION
Calculates the number of characters of unused data space. This function is non-reentrant.

The functions serErdFree () and serFrdFree () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXrdFree(int port), where “port” is one of the macros
SER_PORT A through SER_PORT _F.

RETURN VALUE
The number of chars it would take to fill input buffer X.

LIBRARY
RS232.LIB

466 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXrdUsed

int serXrdUsed(void); /* where X is A-F */

DESCRIPTION

Calculates the number of characters ready to read from the serial port receive buffer. This func-
tion is non-reentrant.

The functions serErdUsed () and serFrdUsed () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXrdUsed(int port), where “port” is one of the macros
SER_PORT A through SER PORT _F.

RETURN VALUE

The number of characters currently in serial port X receive buffer.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com 467

http://www.rabbit.com

serXread

int serXread(void * data, int length, unsigned long tmout) ;
/* where X is A-F */

DESCRIPTION

Reads 1ength bytes from serial port X or until tmout milliseconds transpires between bytes.
The countdown of tmout does not begin until a byte has been received. A timeout occurs im-

mediately if there are no characters to read. This function is non-reentrant.

The functions serEread () and serFread () may be used with the Rabbit 3000 and Rabbit

4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of

the generalized function is: serXread(int port, ...), where “port” is one of the macros
SER_PORT A through SER_PORT F.

PARAMETERS
data Data structure to read from serial port X
length Number of bytes to read
tmout Maximum wait in milliseconds for any byte from previous one

RETURN VALUE

The number of bytes read from serial port X.

LIBRARY
RS232.LIB

EXAMPLE

// echoes a blocks of characters
main() {
int n;
char s[16];
serAopen (19200) ;
while (1) {
if ((n = serAread(s, 15, 20)) > 0) {
serAwrite (s, n) ;
}

}

serAclose () ;

468 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXwrFlush

void serXwrFlush(void); /* where X is A-F */

DESCRIPTION

Flushes serial port X transmit buffer, meaning that the buffer contents will not be sent. This
function is non-reentrant.

The functions serEwrFlush () and serFwrFlush () may be used with the Rabbit 3000

and Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXwrFlush(int port), where “port” is one of the macros
SER_PORT A through SER PORT _F.

LIBRARY
RS232.LIB

serXwrFree

int serXwrFree(void); /* where X is A-F */

DESCRIPTION

Calculates the free space in the serial port transmit buffer. This function is non-reentrant.

The functions serEwrFree () and serFwrFree () may be used with the Rabbit 3000 and

Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXwrFree(port), where “port” is one of the macros
SER_PORT A through SER_PORT F.

RETURN VALUE

The number of characters the serial port transmit buffer can accept before becoming full.

LIBRARY
RS232.LIB

Dynamic C Functions rabbit.com

469

http://www.rabbit.com

serXwrite

int serXwrite(void * data, int length); /* X is A-F */

DESCRIPTION

Transmits 1ength bytes to serial port X. This function is non-reentrant.

The functions serEwrite () and serFwrite () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXwrite(int port, ...), where “port” is one of the macros
SER_PORT A through SER_PORT F.

PARAMETERS
data Data structure to write to serial port X
length Number of bytes to write

RETURN VALUE

The number of bytes successfully written to the serial port.

LIBRARY
RS232.LIB

EXAMPLE

// writes a block of characters, repeatedly
main() {
const char s[] = "Hello Rabbit";
serRPopen (19200) ;
while (1) {
serAwrite (s, strlen(s)) ;
}

serAclose () ;

}

470 rabbit.com Dynamic C Functions

http://www.rabbit.com

serXwrUsed

int serXwrUsed(void); /* where X is A-F */

DESCRIPTION
Returns the number of characters in the output buffer. This function is non-reentrant.

The functions serErdUsed () and serFrdUsed () may be used with the Rabbit 3000 and
Rabbit 4000.

Note: Alternatively you can use another form of this function that has been generalized
for all serial ports. Instead of substituting for “X” in the function name, the prototype of
the generalized function is: serXwrUsed(int port), where “port” is one of the macros
SER_PORT A through SER_PORT F.

RETURN VALUE

The number of characters currently in the output buffer.

LIBRARY

RS232.LIB

Dynamic C Functions rabbit.com 471

http://www.rabbit.com

set

void set(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Sets specified bit at memory address to 1. bit may be
from 0 to 31. This is equivalent to the following expression, but more efficient:

* (long *)address |= 1L << bit
PARAMETERS
address Address of byte containing bits 7-0
bit Bit location where 0 represents the least significant bit
LIBRARY
UTIL.LIB
SEE ALSO
SET
SET

void SET(void * address, unsigned int bit);

DESCRIPTION

Dynamic C may expand this call inline. Sets specified bit at memory address to 1. bit may be
from 0 to 31. This is equivalent to the following expression, but more efficient:

* (long *)address |= 1L << bit
PARAMETERS
address Address of byte containing bits 7-0.

bit Bit location where 0 represents the least significant bit.

LIBRARY
UTIL.LIB

SEE ALSO

set

472 rabbit.com Dynamic C Functions

http://www.rabbit.com

set32kHzDivider

void set32kHzDivider(int setting);

DESCRIPTION

Sets the expanded 32kHz oscillator divider for the Rabbit 3000 processor. This function does
not enable running the 32kHz oscillator instead of the main clock. This function will affect the
actual rate used by the processor when the 32kHz oscillator has been enabled to run by a call to
use32kHzOsc ().

This function is not task reentrant.

PARAMETER
setting 32kHz divider setting. The following are valid:
* OSC32DIV_1 -don't divide 32kHz oscillator
e OSC32DIV_2 - divide 32kHz oscillator by two
* OSC32DIV_4 - divide 32kHz oscillator by four
* 0SC32DIV_8 - divide 32kHz oscillator by eight
* OSC32DIV_16 - divide 32kHz oscillator by sixteen
LIBRARY
SYS.LIB
SEE ALSO

useClockDivider, useClockDivider3000, useMainOsc, use32kHzOsc

Dynamic C Functions rabbit.com

473

http://www.rabbit.com

setClockModulation

void setClockModulation(int setting);

DESCRIPTION

Changes the setting of the Rabbit 3000 CPU clock modulation. Calling this function will force
a 500 clock delay before the setting is changed to ensure that the previous modulation setting
has cleared before the next one is set. See the Rabbit 3000 Microprocessor User's Manual for
more details about clock modulation for EMI reduction.

PARAMETER
setting Clock modulation setting. Allowed values are:
* 0 =no modulation
* 1 = weak modulation
* 2 = strong modulation
LIBRARY
SYS.LIB

474 rabbit.com Dynamic C Functions

http://www.rabbit.com

set cpu power mode

int set_cpu power mode(int mode, char clkDoubler, char
shortChipSelect);

DESCRIPTION

Sets operating power of the controller. Suspend serial communication and other data transmis-
sion activity prior to calling this function, which sets higher priority interrupt while switching
clock frequencies.

This function is non-reentrant.
PARAMETERS

mode Mode operation. Use the following table values below. (The higher the val-
ue the lower the power consumption of controller.)

Mode Description Comments

1 Cclk=Pclk=MainOsc Debug capable

2 Cclk=Pclk=MainOsc/2 Debug capable (19200 baud)

3 Cclk=Pclk=MainOsc/4 Debug capable (9600 baud)

4 Cclk=Pclk=MainOsc/6

5 Cclk=Pclk=MainOsc/8

6 Celk=Pclk= 32.768KHz Penodw Interrupt disabled, so
call hitwd()

7 | Celk=Pclk=32KHz/2-16.384KHz | ' criodic Interrupt disabled, so
call hitwd()

8§ | Colk=Pclk=32KHz/4 -8.192KHz | Feriodic Interrupt disabled, so
call hitwd()

9 Colk=Pclk=32KHz/3=4 096K Hz Periodic Interrupt disabled, so

call hitwd()

Periodic Interrupt disabled, so

10 Cclk=Pclk=32kHz/16 =2.048KHz call hitwd()

Dynamic C Functions rabbit.com 475

http://www.rabbit.com

set cpu power mode (cont’d)

clkDoubler Clock doubler setting: CLKDOUBLER _ON or CLKDOUBLER_OFF.

CPU will operate at half selected speed when turned off. This param-
eter only affects main oscillator modes, not 32 kHZ oscillator modes.
Turning Clock doubler off reduces power consumption.

shortChipSelect Short Chip Select setting. Use SHORTCS_ OFF, or SHORTCS ON.

Note: When short chip select is on, make sure that interrupts are dis-

abled during I/O operations. Turning Short Chip Select on may

reduce power consumption. See the Rabbit processor manual for

more information regarding chip selects and low power operation.
RETURN VALUE

0: valid parameter
-1: invalid parameter

LIBRARY

low power.lib

476 rabbit.com Dynamic C Functions

http://www.rabbit.com

setjmp

int setjmp(jmp buf env);

DESCRIPTION

Store the PC (program counter), SP (stack pointer) and other information about the current state
into env. The saved information can be restored by executing longjmp ().

Note: you cannot use set jmp () to move out of slice statements, costatements, or

cofunctions.
Typical usage:
switch (setjmp(e))
case 0: // first time
£0); // try to execute f(), may call longjmp()
break; // if we get here, f() was successful
case 1: // to get here, f() called longjmp()
/* do exception handling */
break;
case 2: // similar to above, but different exception code
}
£0 |
g()
}
g0 |
longjmp (e, 2) ; // exception code 2, jump to setjmp() statement,
// setjimp() returns 2, so execute
// case 2 in the switch statement
}
PARAMETERS
env Information about the current state

RETURN VALUE

Returns zero if it is executed. After Longjmp () is executed, the program counter, stack point-
er and etc. are restored to the state when set jmp () was executed the first time. However, this
time setjmp () returns whatever value is specified by the 1ongjmp () statement.

LIBRARY
SYS.LIB

SEE ALSO
longjmp

Dynamic C Functions rabbit.com 477

http://www.rabbit.com

SetSerialTATxRValues

long SetSerialTATxRValues(long bps, char #*divisor, int tatXr);

DESCRIPTION

Sets up the possibly shared serial timer (TATxR) resources required to achieve, as closely as
possible, the requested serial bps rate. The algorithm attempts to find, when necessary and if
possible, the lowest value for the TAT1R that will precisely produce the requested serial bps
rate. For this reason, an application that requires the TAT 1R to be shared should generally first
set up its usage with (1) the most critical timer A1l cascade rate, or (2) the lowest timer A1l cas-
cade rate. That is, consider setting up the most critical stage (PWM, servo, triac, ultra-precise
serial rate, etc.) first, else set up the slowest usage (often, the lowest serial rate) first.

Note that this function provides no TATXR resource sharing protection for an application that
uses any of the individual TATxR resources either directly or indirectly. For example, this func-
tion affords no protection to an application that sets a direct usage TAT7R timer interrupt and
also opens serial port D such that TAT7R is used to set the serial data rate.

A run time error occurs if parameter(s) are invalid. Also, this function is not reentrant.

PARAMETERS
bps The requested serial bits per second (BPS, baud) rate.
divisor An optional pointer to the caller's serial timer divisor variable. If the caller
is not interested in the actual serial timer (TATxR) divisor value that is set
by this function, then NULL may be passed.
tatXr The TATxXR for the serial timer whose value(s) are to be set. Use exactly

one of the following macros:

* TAT4R for serial port A
TAT5R for serial port B
TAT6R for serial port C
TAT7R for serial port D
TAT2R for serial port E
TAT3R for serial port F

L]

L]

RETURN VALUE
The actual serial rate BPS (baud) setting that was achieved.

LIBRARY
sys.lib

SEE ALSO
TAT1R_SetValue

478 rabbit.com Dynamic C Functions

http://www.rabbit.com

SetVectExtern2000

unsigned SetVectExtern2000(int priority, wvoid * isr);

DESCRIPTION
Sets up the external interrupt table vectors for external interrupts 0 and 1. This function should
be used for Rabbit 2000 processors revision 1Q2 due to a bug in the chip's interrupt handling.
(See Technical Note 301, “Rabbit 2000 Microprocessor Interrupt Issue,” on the Rabbit Semi-
conductor website for more information.)

Once this function is called, both external interrupts 0 and 1 should be enabled with priority lev-
els set higher than any currently running interrupts. (All system interrupts in the BIOS run at
interrupt priority 1.) The interrupt priority is set via the control register IOCR for external inter-
rupt 0 and [1CR for external interrupt 1.

The actual priority used by the interrupt service routine (ISR) is passed to this function.

PARAMETERS
priority Priority the ISR should run at. Valid values are 1, 2 or 3.
isr ISR handler address. Must be a root address.

RETURN VALUE

Address of vector table entry, or zero if priority is not valid.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern2000, SetVectIntern, GetVectIntern

Dynamic C Functions rabbit.com 479

http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml
http://www.rabbitsemiconductor.com/docs/app_tech_notes.shtml
http://www.rabbit.com

SetVectExtern3000

unsigned SetVectExtern3000(int interruptNum, void * isr);

DESCRIPTION

Function to set one of the external interrupt jump table entries for the Rabbit 3000 and some
versions of the Rabbit 2000. All Rabbit interrupts use jump vectors. See SetVectIntern ()
for more information.

PARAMETERS
interruptNum External interrupt number. 0 and 1 are the only valid values.

isr ISR handler address. Must be a root address.

RETURN VALUE

Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern3000, SetVectIntern, GetVectIntern

480 rabbit.com Dynamic C Functions

http://www.rabbit.com

SetVectExtern4000

unsigned SetVectExtern4000(int interruptNum, void * isr);

DESCRIPTION

Function to set one of the external interrupt jump table entries for the Rabbit 4000, Rabbit 3000
and some versions of the Rabbit 2000. All Rabbit interrupts use jump vectors. See
SetVectIntern () for more information.

PARAMETERS
interruptNum External interrupt number. 0 and 1 are the only valid values.

isr ISR handler address. Must be a root address.

RETURN VALUE

Jump address in vector table.

LIBRARY
SYS.LIB

SEE ALSO
GetVectExtern3000, SetVectIntern, GetVectIntern

Dynamic C Functions rabbit.com

481

http://www.rabbit.com

SetVectIntern

unsigned SetVectIntern(int vectNum, void * isr);

DESCRIPTION

Sets an internal interrupt table entry. All Rabbit interrupts use jump vectors. This function writes
a jp instruction (0xC3) followed by the 16 bit ISR address to the appropriate location in the
vector table. The location in RAM of the vector table is determined and set by the BIOS auto-
matically at startup. The start of the table is always on a 0x100 boundary.

It is perfectly permissible to have ISRs in xmem and do long jumps to them from the vector ta-
ble. It is even possible to place the entire body of the ISR in the vector table if it is 16 bytes long
or less, but this function only sets up jumps to 16 bit addresses.

The following table shows the vectNum value for each peripheral or RST. The offset into the
vector table is also shown. The following vectors are valid for all Rabbit processors.

Peripheral or RST vectNum Vector Table Offset
Periodic interrupt 0x00 0x00
RST 10 instruction 0x02 0x20
RST 38 instruction 0x07 0x70
Slave Port 0x08 0x80
Timer A 0x0A 0xA0
Timer B 0x0B 0xBO
Serial Port A 0x0C 0xCO
Serial Port B 0x0D 0xDO
Serial Port C 0x0E 0xEO
Serial Port D OxO0F 0xFO

The following vectors are valid starting with the Rabbit 3000.

Peripheral or RST vectNum Vector Table Offset
Input Capture 0x1A 0x01A0
Quadrature Encoder 0x19 0x0190
Serial port E 0x1C 0x01CO
Serial port F 0x1D 0x01DO0

482 rabbit.com Dynamic C Functions

http://www.rabbit.com

SetVectIntern (cont’d)

The following vectors are valid starting with the Rabbit 3000 Revision 1.

Peripheral or RST vectNum Vector Table Offset
Pulse Width Modulator 0x17 0x0170
Secondary Watchdog 0x01 0x10
The following vectors are valid starting with the Rabbit 4000.
Peripheral or RST vectNum Vector Table Offset
Timer C Ox1F 0x01FO
Network Port A Ox1E 0x01EO

The following three RSTs are included for completeness, but should not be set by the user as

RETURN VALUE

they are used by Dynamic C.
Peripheral or RST vectNum Vector Table Offset
RST 18 instruction 0x03 0x30
RST 20 instruction 0x04 0x40
RST 28 instruction 0x05 0x50
PARAMETERS
vectNum Interrupt number. See the above table for valid values.
isr ISR handler address. Must be a root address.

Address of vector table entry, or zero if vectNum is not valid.

LIBRARY
SYS.LIB
SEE ALSO
GetVectExtern2000, SetVectExtern2000, GetVectIntern
Dynamic C Functions rabbit.com 483

http://www.rabbit.com

sf getPageCount

long sf getPageCount(sf device * dev);

DESCRIPTION

Return number of pages in a flash device.
PARAMETER

dev Pointer to sf _device struct for initialized flash device.

RETURN VALUE
Number of pages.

LIBRARY
SFLASH.LIB

sf getPageSize

unsigned int sf getPageSize(sf device * dev);
DESCRIPTION
Return size (in bytes) of a page on the current flash device.
PARAMETER
dev Pointer to sf _device struct for initialized flash device.

RETURN VALUE
Bytes in a page.

LIBRARY
SFLASH.LIB

484 rabbit.com Dynamic C Functions

http://www.rabbit.com

sf init

int sf init(void);

DESCRIPTION
Initializes serial flash chip. This function must be called before the serial flash can be used. Cur-
rently supported devices are:
* AT45DB041
* AT45DB081
* AT45DB642
* AR45DB1282

Note: This function blocks and only works on boards with one serial flash device.

RETURN VALUE

0 for success

-1 if no flash chip detected

-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com 485

http://www.rabbit.com

sf initDevice

int sf initDevice(sf device * dev, int c¢s_port, char * cs_shadow,
int cs_pin);

DESCRIPTION
Replaces sf _init ().
The function sfspi init () mustbe called before any calls to this function. Initializes serial
flash chip. This function must be called before the serial flash can be used. Currently supported
devices are:
* AT45DB041
+ AT45DB081
+ AT45DB642
* AR45DB1282

PARAMETERS
dev Pointer to an empty sf _device struct that will be filled in on return. The
struct will then act as a handle for the device.
cs_port I/0 port for the active low chip select pin for the device.
cs_shadow Pointer to the shadow variable for cs_port.
cs_pin I/0 port pin number for the chip select signal.

RETURN VALUE

0 for success

-1lif no flash chip detected

-2 if error communicating with flash chip
-3 if unknown flash chip type

LIBRARY
SFLASH.LIB

486 rabbit.com Dynamic C Functions

http://www.rabbit.com

sf isWriting

int sf isWriting(sf device * dev);
DESCRIPTION
Returns 1 if the flash device is busy writing to a page.
PARAMETER
dev Pointer to sf _device struct for initialized flash device

RETURN VALUE
1 busy
0 ready, not currently writing

LIBRARY
SFLASH.LIB

sf pageToRAM

int sf pageToRAM(long page);

DESCRIPTION
Command the serial flash to copy the contents of one of its flash pages into its RAM buffer.

Note: This function blocks and only works on boards with one serial flash device.
PARAMETER
page The page to copy.

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com

487

http://www.rabbit.com

sf RAMToPage

int sf RAMToPage(long page);

DESCRIPTION

Command the serial flash to write its RAM buffer contents to one of the flash memory pages.
Note: This function blocks and only works on boards with one serial flash device.
PARAMETER

page The page to which the RAM buffer contents will be written t

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

488 rabbit.com Dynamic C Functions

http://www.rabbit.com

sf readDeviceRAM

int sf readDeviceRAM(sf device * dev, long buffer, int offset,
int len, int flags):;

DESCRIPTION

Read data from the RAM buffer on the serial flash chip into an xmem buffer.

PARAMETERS
dev
buffer
offset
len

flags

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to sf_device struct for initialized flash device.
Address of an xmem buffer.

The address in the serial flash RAM to start reading from.
The number of bytes to read.

Can be one of the following:

SF_BITSREVERSED - Reads the data in bit reversed order from the flash
chip. This improves speed, but the data must have been also written in re-
versed order (see sf_XWriteRAM)

SF_RAMBANK1(default) - Reads from the first RAM bank on the flash de-
vice

SF_RAMBANK?2 - Reads from the alternate RAM bank on the flash device

Dynamic C Functions

rabbit.com

489

http://www.rabbit.com

sf readPage

int sf readPage(sf device * dev, int bank, long page):;

DESCRIPTION
Replaces sf _pageToRAM ().

Command the serial flash to copy from one of its flash pages to one of its RAM buffers.

PARAMETERS
dev Pointer to sf_device struct for initialized flash device.
bank Which RAM bank to write the data to. For Atmel 45DBxxx devices, this
can be 1 or 2.
page The page to read from.

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

490 rabbit.com Dynamic C Functions

http://www.rabbit.com

sf readRAM

int sf readRAM(char * buffer, int offset, int len);

DESCRIPTION
Read data from the RAM buffer on the serial flash chip.

Note: This function blocks and only works on boards with one serial flash device.

PARAMETER
buffer Pointer to character buffer to copy data into.
offset Address in the serial flash RAM to start reading from
len Number of bytes to read

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Dynamic C Functions rabbit.com

491

http://www.rabbit.com

sf writeDeviceRAM

int sf writeDeviceRAM(sf device * dev, long buffer, int offset,
int len, int flags):;

DESCRIPTION
Write data to the RAM buffer on the serial flash chip from a buffer in xmem.

PARAMETER
dev Pointer to sf_device struct for initialized flash device.
buffer Pointer to xmem data to write into the flash chip RAM.
offset The address in the serial flash RAM to start writing at.
len The number of bytes to write.
flags Can be one of the following:

* SF_BITSREVERSED - Allows the data to be written to the flash in
reverse bit order. This improves speed, and works fine as long as the
data is read back out with this same flag (see sf_XReadRAM)

* SF_RAMBANKI1 (default) - Writes to the first RAM bank on the flash
device

* SF_RAMBANK?2 - Writes to the alternate RAM bank on the flash de-
vice
RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

492 rabbit.com Dynamic C Functions

http://www.rabbit.com

sf writePage

int sf writePage(sf device * dev, int bank, long page);

DESCRIPTION

Replaces sf RAMToPage ().

Command the serial flash to write its RAM buffer contents to one of its flash memory pages.
Check for completion of the write operation using sf isWriting().

PARAMETERS
dev

bank

page

RETURN VALUE

0: Success
-1: Error

LIBRARY
SFLASH.LIB

Pointer to sf_device struct for initialized flash device.

Which RAM bank to write the data from. For Atmel 45DBxxx devices, this
canbe 1 or 2

The page to write the RAM buffer to

Dynamic C Functions

rabbit.com

493

http://www.rabbit.com

sf writeRAM

int sf writeRAM(char * buffer, int offset, int len);

DESCRIPTION

Write data to the RAM buffer on the serial flash chip.

Note: This function blocks and only works on boards with one serial flash device.

PARAMETER
buffer
offset

len

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

Pointer to data that will be written the flash chip RAM.
Address in the serial flash RAM to start writing at.

Number of bytes to write.

sfspi init

int sfspi init(void);

DESCRIPTION

Initialize SPI driver for use with serial flash. This must be called before any calls to
sf initDevice().

RETURN VALUE

0 for success
-1 for error

LIBRARY
SFLASH.LIB

494

rabbit.com Dynamic C Functions

http://www.rabbit.com

sin

float sin (float x);

DESCRIPTION
Computes the sine of x.

Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

x Angle in radians.

RETURN VALUE

Sine of x.

LIBRARY
MATH.LIB

SEE ALSO

gsinh, asin, cos, tan

sinh

float sinh(float x):;

DESCRIPTION

Computes the hyperbolic sine of x. This functions takes a unitless number as a parameter and
returns a unitless number.

PARAMETERS

x Value to compute.

RETURN VALUE
The hyperbolic sine of x.
If x > 89.8 (approx.), the function returns INF and signals a range error. If x <—89.8 (approx.),
the function returns —INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO

sin, asin, cosh, tanh

Dynamic C Functions rabbit.com 495

http://www.rabbit.com

snprintf

int snprintf(char * buffer, int len, char * format, ...);

DESCRIPTION

This function takes a string (pointed to by format), arguments of the format, and outputs the
formatted string to the buffer pointed to by buf fer. snprintf () will only output up to
len characters. The user should make sure that:

* there are enough arguments after format to fill in the format parameters in the format
string

* the types of arguments after format match the format fields in format

For example,
snprintf (buffer, BUF LEN, "%s=%x",'"variable x",b256) ;
puts the string “variable x=100" into buf fer.

A complete list of valid conversion specifiers (%d, %s, etc.) can be found in the description for
printf () under Dynamic C Conversion Specifiers.

The macro STDIO DISABLE FLOATS can be defined if it is not necessary to format floating
point numbers. If this macro is defined, %e, %f and %g will not be recognized. This can save
thousands of bytes of code space.

This function can be called by processes of different priorities.

PARAMETERS
buffer Location of formatted string.
len The maximum length of the formatted string.
format String to be formatted.
.o Format arguments.

RETURN VALUE

The number of characters written. If the output is truncated due to the 1en parameter, then this
function returns the number of characters that would have been written had there been enough
space.

LIBRARY
STDIO.LIB

SEE ALSO
printf, sprintf

496 rabbit.com Dynamic C Functions

http://www.rabbit.com

SPTIinit

void SPIinit(wvoid);

DESCRIPTION

Initialize the SPI port parameters for a serial interface only. This function does nothing for a par-
allel interface. A description of the values that the user may define before the #use SPI.LIB
statement is found at the top of the library Lib\Spi\Spi.lib.

LIBRARY
SPI.LIB

SEE ALSO
SPIRead, SPIWrite, SPIWrRd

Dynamic C Functions rabbit.com 497

http://www.rabbit.com

SPIRead

void SPIRead(void * DestAddr, int ByteCount);

DESCRIPTION

Reads a block of bytes from the SPI port. The variable SPIxor needs to be set to either 0x00
or 0xFF depending on whether or not the received signal needs to be inverted. Most applications

will not need inversion. SPIinit () sets the value of SPIxor to 0x00.

If SPI_SLAVE RDY PORT is defined for a slave device the driver will turn on the bit imme-
diately upon activating the receiver. It will then wait for a byte to become available then turn off
the bit. The byte will not be available until the master supplies the 8 clock pulses.

If SPTI_SLAVE RDY PORT is defined for a master device the driver will wait for the bit to
become true before activating the receiver and then wait for it to become false after receiving

the byte.

Note for Master: the receiving device Chip Select must already be active

PARAMETERS
DestAddr Address to store the data
ByteCount Number of bytes to read

RETURN VALUE

Master: none.
Slave: 0 = no CS signal, no received bytes.
1 = CS, bytes received.

LIBRARY
SPI.LIB

SEE ALSO
SPIinit, SPIWrite, SPIWrRd

498 rabbit.com

Dynamic C Functions

http://www.rabbit.com

SPIWrite

int SPIWrite(void * SrcAddr, int ByteCount);

DESCRIPTION
Write a block of bytes to the SPI port.

If SPI_SLAVE RDY PORT is defined for a slave device the driver will turn on the bit imme-
diately after loading the transmit register. It will then wait for the buffer to become available
then turn off the bit. The buffer will not become available until the master supplies the first
clock.

If SPI_SLAVE_ RDY PORT is defined for a master device the driver will wait for the bit to
become true before transmitting the byte and then wait for it to become false after transmitting
the byte.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of data to write.
ByteCount Number of bytes to write.

RETURN VALUE

Master: none.
Slave: 0 = no CS signal, no transmitted bytes.
1 = CS, bytes transmitted.

LIBRARY
SPI.LIB

SEE ALSO
SPIinit, SPIRead, SPIWrRd

Dynamic C Functions rabbit.com 499

http://www.rabbit.com

SPIWrRd

void SPIWrRd(void * SrcAddr, void * DstAddr, int ByteCount) ;

DESCRIPTION
Read and Write a block of bytes from/to the SPI port.

Note for Master: the receiving device Chip Select must already be active.

PARAMETERS
SrcAddr Address of data to write.
DstAddr Address to put received data.
ByteCount Number of bytes to read/write. The maximum value is 255 bytes. This limit
is not checked! The receive buffer MUST be at least as large as the number
of bytes!

RETURN VALUE

Master: none.
Slave: 0 = no CS signal, no received/transmitted bytes.
1 = CS, bytes received/transmitted.

LIBRARY
SPI.LIB

SEE ALSO
SPIinit, SPIRead, SPIWrite

500 rabbit.com Dynamic C Functions

http://www.rabbit.com

sprintf

int sprintf(char * buffer, char * format, ...);

DESCRIPTION

This function takes a string (pointed to by format), arguments of the format, and outputs the

formatted string to buf fer (pointed to by buf fer). The user should make sure that:

* there are enough arguments after format to fill in the format parameters in the format

string
* the types of arguments after format match the format fields in format
* the buffer is large enough to hold the longest possible formatted string

The following is a short list of valid conversion specifiers in the format string. For a complete

list of conversion specifiers, refer to the function description for printf ().

%d decimal integer (expects type int)

%u decimal unsigned integer (expects type unsigned int)

%x hexadecimal integer (expects type signed int or unsigned int)
%s a string (not interpreted, expects type (char *))

%f a float (expects type £1oat)

For example,
sprintf (buffer,"%s = %x","variable x",256) ;

puts the string “variable x = 100” into buffer.

The macro STDIO DISABLE_ FLOATS can be defined ifit is not necessary to format floating
point numbers. If this macro is defined, %e, %f and %g will not be recognized. This can save

thousands of bytes of code space.

This function can be called by processes of different priorities.

PARAMETERS
buffer Result string of the formatted string.
format String to be formatted.
.o Format arguments.

RETURN VALUE

Number of characters written.

LIBRARY
STDIO.LIB

SEE ALSO
printf

Dynamic C Functions rabbit.com

501

http://www.rabbit.com

sqgrt

float sqgrt(float x);

DESCRIPTION

Calculate the square root of x.

PARAMETERS

x Value to compute.

RETURN VALUE

The square root of x.

LIBRARY
MATH.LIB

SEE ALSO

exp, pow, powlO

srand

void srand(unsigned long seed);

DESCRIPTION

Sets the seed value for the rand () function.

PARAMETER

seed This must be an odd number.

LIBRARY
MATH.LIB

SEE ALSO

rand, randb, randg

502 rabbit.com

Dynamic C Functions

http://www.rabbit.com

strcat

NEAR SYNTAX: char * n strcat(char * dst, char * src);
FAR SYNTAX: char far * _f strcat(char far * dst, char far * src

Note: By default, strcat () isdefinedto n strcat ().

DESCRIPTION

Concatenate string src to the end of dst.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to destination string.
src Pointer to location to source string.

RETURN VALUE

Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO

strncat

)

Dynamic C Functions rabbit.com

503

http://www.rabbit.com

strchr

NEAR SYNTAX: char * n strchr(char * src, char ch);
FAR SYNTAX: char far * f strchr(char far * src, char ch);

Note: By default, strchr () isdefinedto n strchr ().

DESCRIPTION

Scans a string for the first occurrence of a given character.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
src String to be scanned.
ch Character to search

RETURN VALUE

Pointer to the first occurrence of ch in src.
Null if ch is not found.

LIBRARY
STRING.LIB

SEE ALSO

strrchr, strtok

504 rabbit.com Dynamic C Functions

http://www.rabbit.com

strcmp

NEAR SYNTAX: int n stremp(char * strl, char * str2);
FAR SYNTAX: int £ strcmp(char far * strl, char far * str2);

Note: By default, strcmp () is definedto n strcmp ().

DESCRIPTION

Performs unsigned character by character comparison of two null terminated strings.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: strl is less than st r2 because
character in st r1 is less than corresponding character in str2, or
strl is shorter than but otherwise identical to str2.

=0: strl is identical to str2

>0: strl is greater than str2 because
character in str1 is greater than corresponding character in str2, or
str2 is shorter than but otherwise identical to strl.

LIBRARY
STRING.LIB

SEE ALSO

strncmp, strcmpi, strncmpi

Dynamic C Functions rabbit.com 505

http://www.rabbit.com

strcmpi

NEAR SYNTAX: int * n strcmpi(char * strl, char * str2);
FAR SYNTAX: int £ strcmpi(char far * strl, char far * str2);

Note: By default, strcmpi () isdefinedto n strcmpi ().

DESCRIPTION

Performs case-insensitive unsigned character by character comparison of two null terminated
strings.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR_ STRING macro is de-
fined and all pointers are near pointers, append n__ to the function name, e.g., n_strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.

RETURN VALUE

<0: strl is less than str2 because
character in str1 is less than corresponding character in str2, or
stril is shorter than but otherwise identical to str2.

=0: strl is identical to str2

>0: strl is greater than str2 because
character in str1 is greater than corresponding character in str2, or
str2 is shorter than but otherwise identical to strl.

LIBRARY
STRING.LIB

SEE ALSO

strncmpi, strncmp, strcmp

506 rabbit.com Dynamic C Functions

http://www.rabbit.com

strcpy

NEAR SYNTAX: char * n strcpy(char * dst, char * src);
FAR SYNTAX: char far * _f strcpy(char far * dst, char far * src

Note: By default, strcpy () isdefinedto n strcpy ().

DESCRIPTION

Copies one string into another string, including the null terminator.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.

RETURN VALUE

Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strncpy

)

Dynamic C Functions rabbit.com

507

http://www.rabbit.com

strcspn

NEAR SYNTAX: unsigned int n strcspn(char * sl, char * s2);
FAR SYNTAX: size t f strcspn(char far * sl, char far * s2);

Note: By default, strcspn () isdefinedto n strcpsn().

DESCRIPTION

Scans a string for the occurrence of any of the characters in another string.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Returns the position (less one) of the first occurrence of a character in s1 that matches any char-
acter in s2.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strrchr, strtok

508 rabbit.com Dynamic C Functions

http://www.rabbit.com

strlen

NEAR SYNTAX: int n strlen(char * s);
FAR SYNTAX: int f strlen(char far * s);

Note: By default, strlen () isdefinedto n strlen().

DESCRIPTION
Calculate the length of a string.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS

s Character string.

RETURN VALUE

Number of bytes in a string.

LIBRARY
STRING.LIB

Dynamic C Functions rabbit.com 509

http://www.rabbit.com

strncat

NEAR SYNTAX: char * n strncat(char *dst, char *src, unsigned int n);
FAR SYNTAX: char far * _f strncat(char far * dst, char far * src,
size t n);

Note: By default, strncat () isdefinedto _n strncat ().

DESCRIPTION

Appends one string to another up to and including the null terminator or until n characters are
transferred, followed by a null terminator.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytes to copy. If equal to zero, this function has no

effect.

RETURN VALUE

Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO

strcat

510 rabbit.com Dynamic C Functions

http://www.rabbit.com

strncmp

NEAR SYNTAX: int n strncmp(char * strl, char * str2, n);
FAR SYNTAX: int f strncmp(char far * strl, char far * str2, unsigned
n);

Note: By default, strncmp () isdefinedto _n strncmp ().

DESCRIPTION

Performs unsigned character by character comparison of two strings of length n.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n Maximum number of bytes to compare. If zero, both strings are considered

equal.

RETURN VALUE

<0: strl is less than str2 because
char in str1 is less than corresponding char in str2.

=0: strl is identical to str2

>0: strl is greater than str2 because
char in str1 is greater than corresponding char in str2.

LIBRARY
STRING.LIB

SEE ALSO

strcmp, strcmpi, strncmpi

Dynamic C Functions rabbit.com 511

http://www.rabbit.com

strncmpi

NEAR SYNTAX: int n strncmpi(char * strl, char * str2, unsigned n);
FAR SYNTAX: int £ strncmpi(char far * strl, char far * str2,
unsigned n);

Note: By default, strncmpi () is definedto n strncmpi ().

DESCRIPTION
Performs case-insensitive unsigned character by character comparison of two strings of length
n.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
strl Pointer to string 1.
str2 Pointer to string 2.
n Maximum number of bytes to compare, if zero then strings are considered

equal

RETURN VALUE

<0: strl is less than str2 because
char in str1 is less than corresponding char in stxr2.

=0: strl is identical to str2

>0: strl is greater than str2 because
char in str1 is greater than corresponding char in str2.

LIBRARY
STRING.LIB

SEE ALSO

strcmpi, strcmp, strncmp

512 rabbit.com Dynamic C Functions

http://www.rabbit.com

strncpy

NEAR SYNTAX: char * n strncpy(char *dst, char *src, unsigned int n);
FAR SYNTAX: char far * _f strncpy(char far * dst, char far * src,
size t n);

Note: By default, strncpy () isdefinedto _n strncpy ().

DESCRIPTION

Copies a given number of characters from one string to another and padding with null characters
or truncating as necessary.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_ FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
dst Pointer to location to receive string.
src Pointer to location to supply string.
n Maximum number of bytes to copy. If equal to zero, this function has no

effect.

RETURN VALUE

Pointer to destination string.

LIBRARY
STRING.LIB

SEE ALSO
strcpy

Dynamic C Functions rabbit.com 513

http://www.rabbit.com

strpbrk

NEAR SYNTAX: char * n strpbrk(char * sl, char * s2);
FAR SYNTAX: char far * _f strpbrk(char far * sl, char far * s2);

Note: By default, strpbrk () isdefinedto n strpbrk().

DESCRIPTION

Scans a string for the first occurrence of any character from another string.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Character occurrence string.

RETURN VALUE

Pointer pointing to the first occurrence of a character contained in s2 in s1. Returns null if not
found.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strrchr, strtok

514 rabbit.com Dynamic C Functions

http://www.rabbit.com

strrchr

NEAR SYNTAX: char * n strrchr(char * s, int c);
FAR SYNTAX: char far * f strrchr(char far * s, int c);

Note: By default, strrchr () isdefinedto n strrchr ().

DESCRIPTION

Similar to st rchr, except this function searches backward from the end of s to the beginning.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
s String to be searched
c Search character

RETURN VALUE

Pointer to last occurrence of ¢ in s. If ¢ is not found in s, return null.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strcspn, strtok

Dynamic C Functions rabbit.com 515

http://www.rabbit.com

strspn

NEAR SYNTAX: size_t n strspn(char * src, char * brk);
FAR SYNTAX: size t f strspn(char far * src, char far * brk);

Note: By default, strspn () isdefinedto n strspn ().

DESCRIPTION

Scans a string for the first segment in src containing only characters specified in brk.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
src String to be scanned
brk Set of characters

RETURN VALUE
Returns the length of the segment.

LIBRARY
STRING.LIB

516 rabbit.com Dynamic C Functions

http://www.rabbit.com

strstr

NEAR SYNTAX: char * n strstr(char *sl, char *s2);
FAR SYNTAX: char far * _f strstr(char far * sl, char far * s2);

Note: By default, strstr () isdefinedto n strstr ().

DESCRIPTION
Finds a substring specified by s2 in string s1.

For Rabbit 4000+ users, this function supports FAR pointers. By default the near version of the
function is called. The macro USE_FAR STRING will change all calls to functions in this li-
brary to their far versions. The user may also explicitly call the far version with £ strfunc
where strfunc is the name of the string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g., n strfunc.
For more information about FAR pointers, see the Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

PARAMETERS
sl String to be scanned.
s2 Substring to search for.

RETURN VALUE

Pointer to the first occurrence of substring s2 in s1. Returns null if s2 is not found in s1.

LIBRARY
STRING.LIB

SEE ALSO

strcspn, strrchr, strtok

Dynamic C Functions rabbit.com 517

http://www.rabbit.com

strtod

NEAR SYNTAX: float _n strtod(char * s, char ** tailptr);
FAR SYNTAX: float f strtod(char far * s, char far * far * tailptr);

Note: By default, strtod () isdefinedto n strtod().

DESCRIPTION

ANSI string to float conversion.

For Rabbit 4000+ users, this function supports FAR pointers. The macro USE_ FAR STRING
will change all calls to functions in this library to their far versions by default. The user may
also explicitly call the far version with £ strfunc, where strfunc is the name of the
string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR STRING macro is de-
fined and all pointers are near pointers, append n_ to the function name, e.g. n strtod.
For more information about FAR pointers, see th Dynamic C User’s Manual or the samples in
Samples/Rabbit4000/FAR/.

Warning: The far version of strtod is not backwards compatible with near pointers due to
the use of a double pointer. The problem is that char ** tailptr isa 16-bit pointer
pointing to another 16-bit pointer. The far version, char far * far * tailptr, is a 32-bit
pointer pointing to a 32-bit pointer. If you pass a double near pointer as the argument to
the double far pointer function, the double dereference (**tailptr) of the double pointer
will attempt to access a 32-bit address pointed to by the passed near pointer. The compiler
does not know the contents of a pointer and will assume the inner pointer is a 32-bit
pointer. For more information about FAR pointers, please see the Dynamic C User'’s Man-
ual.

518 rabbit.com Dynamic C Functions

http://www.rabbit.com

strtod (cont’d)

In the following examples:

1 = 1byte

[
[10 1I[x]([x] indicatesa NEAR address (16 bit) upcast to FAR

Passing a “char far * far * ptr” as tailptr:

ADDRESS: DATA:

[10 1I[x]Ix] [yl [yl [yl [yl (tailptr)

[v] [y] [yl [yl [z] [z] [z] [z] (*tailptr)

[z] [z] [z] [z] [Correct contents] (**tailptr)

Passing a 'char ** ptr' as tailptr: Note the first pointer can be upcast to FAR but the compiler
doesn't know to upcast the internal pointer.

ADDRESS: DATA:
[10 1I[x]I[x] [10 1[yllyl (tailptr)
[10 1I[yllyl [21[?][z] [z] (*tailptr)
[?][?] [z] [2] [Incorrect contents] (**tailptr)
PARAMETERS
s String to convert.
tailptr Pointer to a pointer of character. The next conversion may resume at the

location specified by *tailptr.

RETURN VALUE

[TPa]

The float number represented by “s.

LIBRARY
STRING.LIB

SEE ALSO
atof

Dynamic C Functions rabbit.com 519

http://www.rabbit.com

strtok

NEAR SYNTAX: char * n strtok(char * src, char * brk);
FAR SYNTAX: char far * _f strtok(char far * src, char far * brk);

Note: By default, strtok () isdefinedto n strtok ().

DESCRIPTION
Scans src for tokens separated by delimiter characters specified in brk.
First call with non-null for src. Subsequent calls with null for src continue to search tokens

in the string. If a token is found (i.e., delineators found), replace the first delimiter in src with
a null terminator so that src points to a proper null terminated token.

PARAMETERS
src String to be scanned, must be in SRAM, cannot be a constant. In contrast,
strings initialized when they are declared are stored in flash memory, and
are treated as constants.
brk Character delimiter.

RETURN VALUE

Pointer to a token. If no delimiter (therefore no token) is found, returns null.

LIBRARY
STRING.LIB

SEE ALSO

strchr, strrchr, strstr, strcspn

520 rabbit.com Dynamic C Functions

http://www.rabbit.com

strtol

NEAR SYNTAX: long n strtol(char * sptr, char ** tailptr, int base);
FAR SYNTAX: long f strtol(char far *sptr, char far * far * tailptr,
int base);

Note: By default, strtol () isdefinedto n strtol ().

DESCRIPTION

ANSI string to long conversion.

For Rabbit 4000+ users, this function supports FAR pointers. The macro USE_ FAR _STRING
will change all calls to functions in this library to their far versions by default. The user may
also explicitly call the far version with £ strfunc, where strfunc is the name of the
string function.

Because FAR addresses are larger, the far versions of this function will run slightly slower than
the near version. To explicitly call the near version when the USE_ FAR_ STRING macro is de-
fined and all pointers are near pointers, append n__ to the function name, e.g. n strtod.
For more information about FAR pointers, see th Dynamic C User s Manual or the samples in
Samples/Rabbit4000/FAR/.

Warning: The far version of strtod is not backwards compatible with near pointers due to
the use of a double pointer. The problem is that char ** tailptr isa 16-bit pointer
pointing to another 16-bit pointer. The far version, char far * far * tailptr, is a 32-bit
pointer pointing to a 32-bit pointer. If you pass a double near pointer as the argument to
the double far pointer function, the double dereference (**tailptr) of the double pointer
will attempt to access a 32-bit address pointed to by the passed near pointer. The compiler
does not know the contents of a pointer and will assume the inner pointer is a 32-bit
pointer. For more information about FAR pointers, please see the Dynamic C User’s Man-
ual.

In the following examples:

1 = 1byte

[
[1[]([x]I[x] indicatesa NEAR address (16 bit) upcast to FAR

Passing a “char far * far * ptr” as tailptr:

ADDRESS: DATA:

[10 1I[x]Ix] [v] [y] [yl [yl (tailptr)

[yl [yl [y] [yl [z] [z] [z] [z] (*tailptr)

[z] [z] [z] [Z] [Correct contents] (**tailptr)

Dynamic C Functions rabbit.com 521

http://www.rabbit.com

strtol (cont’d)

Passing a 'char ** ptr' as tailptr: Note the first pointer can be upcast to FAR but the compiler
doesn't know to upcast the internal pointer.

ADDRESS: DATA:
[10 1I[x]Ix] [10 1[yllyl (tailptr)
[10 1[0yllyl [21[?][z][z] (*tailptr)
[2] [?] [z] [z] [Incorrect contents] (**tailptr)
PARAMETERS
sptr String to convert.
tailptr Assigned the last position of the conversion. The next conversion may re-

sume at the location specified by *tailptr.

base Indicates the radix of conversion.

RETURN VALUE
The long integer.

LIBRARY
STRING.LIB

SEE ALSO

atoi, atol

522 rabbit.com Dynamic C Functions

http://www.rabbit.com

_sysIsSoftReset

void sysIsSoftReset(void);

DESCRIPTION
This function should be called at the start of a program if you are using protected variables. It

determines whether this restart of the board is due to a software reset from Dynamic C or a call
to forceSoftReset (). If it was a soft reset, this function then does the following:

* Calls_prot init () toinitialize the protected variable mechanisms. It is up to the user
to initialize protected variables.

* Calls sysResetChain (). The user my attach functions to this chain to perform
additional startup actions (for example, initializing protected variables). If a soft reset did

not take place, this function calls prot recover () to recover any protected

variables.
LIBRARY
SYS.LIB
SEE ALSO
chkHardReset, chkSoftReset, chkWDTO
sysResetChain

void sysResetChain (void);

DESCRIPTION
This is a function chain that should be used to initialize protected variables. By default, it's emp-

ty.

LIBRARY
SYS.LIB

523

Dynamic C Functions rabbit.com

http://www.rabbit.com

tan

float tan (float x);

DESCRIPTION

Compute the tangent of the argument.
Note: The Dynamic C functions deg () and rad () convert radians and degrees.
PARAMETERS

x Angle in radians.

RETURN VALUE

Returns the tangent of x, where —8 x PI < x <+8 x PI. If x is out of bounds, the function returns
0 and signals a domain error. If the value of x is too close to a multiple of 90° (P1/2) the function
returns INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO

atan, cos, sin, tanh

524 rabbit.com Dynamic C Functions

http://www.rabbit.com

tanh

float tanh (float x);

DESCRIPTION

Computes the hyperbolic tangent of argument. This functions takes a unitless number as a pa-
rameter and returns a unitless number.

PARAMETERS

x Float to use in computation.

RETURN VALUE

Returns the hyperbolic tangent of x. If x >49.9 (approx.), the function returns INF and signals
a range error. If x < —49.9 (approx.), the function returns —INF and signals a range error.

LIBRARY
MATH.LIB

SEE ALSO

atan, cosh, sinh, tan

Dynamic C Functions rabbit.com 525

http://www.rabbit.com

TAT1R SetValue

char TAT1R SetValue(int requestor, int value);

DESCRIPTION

Ifnot already in use, or if in a compatible use, allocates the TAT 1R resource (sets a new or keeps
the current TAT 1R value) as requested. Also enables or disables the requestor's timer A1 cas-
cade bit(s) in TACR or TBCR, as appropriate. When the timer B cascade from timer Al is dis-
abled in TBCR the timer B "clocked by PCLK/2" is then enabled.

A run time error occurs if parameter(s) are invalid and also, this function is not reentrant.

Note: This function does not attempt to manage interrupts that are associated with tim-
ers A or B; that work is left entirely up to the application.

PARAMETERS

requestor The requestor of the TAT1R resource. Use exactly one of the following
macros to specify the appropriate requestor:

* TATIR_AITIMER_REQ (e.g., direct use of Timer A1)

* TATIR_A2TIMER_REQ (e.g., use by serial port E)

* TATIR_A3TIMER_REQ (e.g., use by serial port F)

* TATIR_A4ATIMER_REQ (e.g., use by serial port A)

* TATIR_ASTIMER_REQ (e.g., use by serial port B)

* TATIR_A6TIMER_REQ (e.g., use by serial port C)

* TATIR_A7TIMER_REQ (e.g., use by serial port D)

* TATIR_BTIMER_REQ (e.g., use with PWM, servo or triac)

value Either the new TAT1R setting value (0 to 255, inclusive), or the macro
TAT1R_RELEASE REQ to release the TAT1R resource in use by the
specified requestor.

RETURN VALUE

The new or current TAT1R setting. The caller should check their requested new TAT1R value
against this return value. If the two values are not the same, the caller may decide the return val-
ue is acceptable after all and make another request using the previous return value. A valid re-
lease request always succeeds; in this case there is no need for the caller to check the return
value.

LIBRARY
sys.lib

526 rabbit.com Dynamic C Functions

http://www.rabbit.com

tm rd

int tm rd(struct tm * t);

DESCRIPTION

Reads the current system time from SEC_TIMER into the structure t.

WARNING: The variable SEC_TIMER is initialized when a program is started. If you change
the Real Time Clock (RTC), this variable will not be updated until you restart a program, and
the tm_rd () function will not return the time that the RTC has been reset to. The

read rtc () function will read the actual RTC and can be used if necessary.

PARAMETERS

t Pointer to structure to store time and date.

struct tm {

char tm_sec; // seconds 0-59

char tm min; // 0-59

char tm_hour; // 0-23

char tm mday; // 1-31

char tm mon; // 1-12

char tm_year; // 80-147 (1980-2047)
char tm wday; // 0-6 0==Sunday

RETURN VALUE

0: Successful.
-1: Clock read failed.

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm_ wr

Dynamic C Functions rabbit.com 527

http://www.rabbit.com

tm wr

int tm wr(struct tm * t);

DESCRIPTION

Sets the system time from a tm struct. It is important to note that although tm_rd () reads the
SEC_TIMER variable, not the RTC, tm_wxr () writes to the RTC directly, and SEC_TIMER
is not changed until the program is restarted. The reason for this is so that the DelaySec ()

function continues to work correctly after setting the system time. To make tm_rd () match
the new time written to the RTC without restarting the program, the following should be done:

tm_wr (tm) ;
SEC_TIMER = mktime (tm);

But this could cause problems ifawaitfor (DelaySec (n)) is pending completion in a co-
operative multitasking program or if the SEC_ TIMER variable is being used in another way the
user, so user beware.

PARAMETERS

t Pointer to structure to read date and time from.

struct tm {

char tm_sec; // seconds 0-59

char tm min; // 0-59

char tm_hour; // 0-23

char tm mday; // 1-31

char tm mon; // 1-12

char tm_year; // 80-147 (1980-2047)
char tm wday; // 0-6 0==Sunday

RETURN VALUE

0: Success .
- 1: Failure.

LIBRARY
RTCLOCK.LIB

SEE ALSO

mktm, mktime, tm rd

528 rabbit.com Dynamic C Functions

http://www.rabbit.com

tolower

int tolower(int c);

DESCRIPTION

Convert alphabetic character to lower case.

PARAMETERS

c Character to convert

RETURN VALUE

Lower case alphabetic character.

LIBRARY
STRING.LIB

SEE ALSO

toupper, isupper, islower

toupper

int toupper(int c);

DESCRIPTION

Convert alphabetic character to uppercase.

PARAMETERS

c Character to convert.

RETURN VALUE

Upper case alphabetic character.

LIBRARY
STRING.LIB

SEE ALSO

tolower, isupper, islower

Dynamic C Functions rabbit.com

529

http://www.rabbit.com

updateTimers

void updateTimers(void);

DESCRIPTION

Updates the values of TICK_TIMER,MS TIMER, and SEC_TIMER while running off the 32
kHz oscillator. Since the periodic interrupt is disabled when running at 32 kHz, these values will
not updated unless this function is called.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, use32kHzOsc

use32kHzOsc

void use32kHzOsc(void);

DESCRIPTION

Sets the Rabbit processor to use the 32kHz real-time clock oscillator for both the CPU and pe-
ripheral clock, and shuts off the main oscillator. If this is already set, there is no effect. This
mode should provide greatly reduced power consumption. Serial communications will be lost
since typical baud rates cannot be made from a 32kHz clock. Also note that this function dis-
ables the periodic interrupt, so wait for and related statements will not work properly (al-
though costatements in general will still work). In addition, the values in TICK TIMER,
MS_TIMER, and SEC_TIMER will not be updated unless you call the function
updateTimers () frequently in your code. In addition, you will need to call hitwd () pe-
riodically to hit the hardware watchdog timer since the periodic interrupt normally handles that,
or disable the watchdog timer before calling this function. The watchdog can be disabled with
Disable HW WDT ().

use32kHzOsc () is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, useClockDivider, updateTimers

530 rabbit.com Dynamic C Functions

http://www.rabbit.com

useClockDivider

void useClockDivider (void);

DESCRIPTION

Sets the Rabbit processor to use the main oscillator divided by 8 for the CPU (but not the pe-
ripheral clock). If this is already set, there is no effect. Because the peripheral clock is not af-
fected, serial communications should still work. This function also enables the periodic
interrupt in case it was disabled by a call to use32kHzOsc ().

This function is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

useMainOsc, use32kHzOsc

Dynamic C Functions rabbit.com

531

http://www.rabbit.com

useClockDivider3000

void useClockDivider3000(int setting);

DESCRIPTION

Sets the expanded clock divider options for the Rabbit 3000 processor. Target communications
will be lost after changing this setting because of the baud rate change. This function also en-
ables the periodic interrupt in case it was disabled by a call to user32kHzOsc ().

The peripheral clock is also affected by this function. If you want to divide the main processor
clock and not the peripheral clock, you may use the function useClockDivider () to di-

vide the main processor clock by 8. To divide the main processor clock by any of the other al-
lowable values (2, 4, or 6) means using useClockDivider3000 () and thus dividing the
peripheral clock as well.

This function is not task reentrant.

PARAMETER

setting Divider setting. The following are valid:
* CLKDIV_2 - divide main processor clock by two
* CLKDIV 4 - divide main processor clock by four
* CLKDIV_6 - divide main processor clock by six
* CLKDIV_8 - divide main processor clock by eight
RETURN VALUE

None.

LIBRARY
SYS.LIB

SEE ALSO

useClockDivider, useMainOsc, use32kHzOsc, set32kHzDivider

532 rabbit.com Dynamic C Functions

http://www.rabbit.com

useMainOsc

void useMainOsc(void);

DESCRIPTION

Sets the Rabbit processor to use the main oscillator for both the CPU and peripheral clock. If
this is already set, there is no effect. This function also enables the periodic interrupt in case it
was disabled by a calltouse32kHzOsc (), and updates the TICK TIMER,MS_TIMER, and
SEC_TIMER variables from the real-time clock. This function is not task reentrant.

LIBRARY
SYS.LIB

SEE ALSO

use32kHzOsc, useClockDivider

utoa

char * utoa(unsigned value, char * buf);

DESCRIPTION

Places up to 5 digit character string at *buf representing value of unsigned number. Suppresses
leading zeros, but leaves one zero digit for value = 0. Max = 65535. 73 program bytes.

PARAMETERS
value 16-bit number to convert.
buf Character string of converted number.

RETURN VALUE

Pointer to null at end of string.

LIBRARY
STDIO.LIB

SEE ALSO

itoa, htoa, ltoa

Dynamic C Functions rabbit.com 533

http://www.rabbit.com

vram2root

int vram2root(void * dest, int start, int length);

DESCRIPTION

This function copies data from the VBAT RAM. Tamper detection on the Rabbit 4000 erases
the VBAT RAM with any attempt to enter bootstrap mode.

PARAMETERS
dest The address to which the data in the VBAT RAM will be copied.
start The start location within the VBAT RAM (0-31).
length The length of data to read from VBAT RAM. The length should be greater
than 0.
The parameters length + start should not exceed 32.
LIBRARY
VBAT.LIB
SEE ALSO
root2vram
534 rabbit.com Dynamic C Functions

http://www.rabbit.com

VdGetFreeWd

int VdGetFreeWd(char count);

DESCRIPTION

Returns a free virtual watchdog and initializes that watchdog so that the virtual driver begins
counting it down from count. The number of available virtual watchdogs is determined by the
macro N_WATCHDOG, which is 10 by default. The default can be overridden by the user, e.g.,
#define N WATCHDOG 11.

The virtual driver is called every 0.00048828125 second. On every 128th call to it (i.e., every
62.5 ms), the virtual watchdogs are counted down and then tested. If any virtual watchdog
reaches zero, this is a fatal error. Once a virtual watchdog is active, it should reset periodically
with a call to VdHitWd () to prevent the count from readching zero.

PARAMETERS
count 1 < count <= 255

RETURN VALUE

Integer id number of an unused virtual watchdog timer.

LIBRARY
VDRIVER.LIB

Dynamic C Functions rabbit.com 535

http://www.rabbit.com

VdHitwWd

int VAHitWd(int ndog):;

DESCRIPTION

Resets virtual watchdog counter to N counts where N is the argument to the call to
VdGetFreeWd () that obtained the virtual watchdog ndog.

The virtual driver counts down watchdogs every 62.5 ms. If a virtual watchdog reaches 0, this
is a fatal error. Once a virtual watchdog is active it should reset periodically with a call to
VdHitWd () to prevent this.

IfN=2,vdHitWd () will need to be called again for virtual watchdog ndog within 62.5 ms.

IfN =255, vdHitWwd () will need to be called again for virtual watchdog ndog within
15.9375 seconds.

PARAMETERS

ndog Id of virtual watchdog returned by VdGetFreeWd ()

LIBRARY
VDRIVER.LIB

VdInit

void vdInit(void);

DESCRIPTION

Initializes the Virtual Driver for all Rabbit boards. Supports DelayMs (), DelaySec (),
DelayTick (). VdInit () is called by the BIOS unless it has been disabled.

LIBRARY
VDRIVER.LIB

536 rabbit.com Dynamic C Functions

http://www.rabbit.com

VdReleaseWd

int VdReleaseWd(int ndog);

DESCRIPTION

Deactivates a virtual watchdog and makes it available for VdGet FreeWd ().

PARAMETERS

ndog Handle returned by VdGetFreeWd ()

RETURN VALUE

0: ndog out of range.
1: Success.

LIBRARY
VDRIVER.LIB

EXAMPLE

// VdReleaseWd virtual watchdog example
main () {
int wd; // handle for a virtual watchdog
unsigned long tm;
tm = SEC_TIMER;
wd = VdGetFreeWd (255) ; // wd activated, 9 virtual watchdogs
// now available. wd must be hit
// atleast every 15.875 seconds
while (SEC_TIMER - tm < 60) { // letitrun for a minute
VAHitWd (wd) ; // reset counter back to 255
}

VdReleaseWd (wd) // now 10 virtual watchdogs available

Dynamic C Functions rabbit.com

537

http://www.rabbit.com

WriteFlash2

int WriteFlash2(unsigned long flashDst, void * rootSrc,
unsigned len);

DESCRIPTION

Write 1en bytes from rootSrc to physical address £lashDst on the 2nd flash device. The
source must be in root. The £1ashDst address plus the sum of numbytes [] area must be
within memory quadrant(s) already mapped to the second flash.

This function is not reentrant.

Note: This function should NOT be used if you are using the second flash device for a
flash file system, e.g. if you are writing a TCP/IP-based application!

Note: This function is extremely dangerous when used with large sector flash. Don't do
it.

PARAMETERS
flashDst Physical address of the flash destination
rootSrc Pointer to the root source
len Number of bytes to write

RETURN VALUE

0: Success.
-1: Attempt to write non-2nd flash area, nothing written.
-2: rootsrc not in root.
- 3: Time out while writing flash.
-4: Attempt to write to ID block
- 5: Sector erase needed; write aborted

LIBRARY
XMEM.LIB

538 rabbit.com Dynamic C Functions

http://www.rabbit.com

WriteFlash2Array

int WriteFlash2Array(unsigned long flashDst, void * rootSrcl],
unsigned numbytes[], int numsources);

DESCRIPTION

Write a set of scattered information to the 2nd flash in a contiguous block. The sources are given
in the rootSrc array, and the corresponding number of bytes in each source is given in the
numbytes [] array. All sources must be in root. numsources specifies the number of en-
tries in the root Src and numbytes arrays. The £ lashDst address plus the sum of
numbytes [] area must be within memory quadrant(s) already mapped to the second flash.

This function is not reentrant. It was introduced in Dynamic C version 7.30.

Note: This function should NOT be used if you are using the second flash device for a
flash file system, e.g. if you are writing a TCP/IP-based application!

Note: This function is extremely dangerous when used with large sector flash. Don't do
it.

Note: The sum of the lengths in numbytes [] must not exceed 65535 bytes, else not
all data will be written.

PARAMETERS
flashDst Physical address of the flash destination.
rootSrc Array of pointers to the root sources.
numbytes Array of numbers of bytes to write for each source.
numsources Number of sources specified in rootSrc [] and numbytes[].

RETURN VALUE

0: Success.
-1: Attempt to write non-2nd flash area, nothing written.
-2:rootsrc [] entry not in root.
- 3: Time-out while writing flash.

LIBRARY
XMEM.LIB

Dynamic C Functions rabbit.com 539

http://www.rabbit.com

write rtc

void write rtc(unsigned long int time);

DESCRIPTION

Writes a 32 bit seconds value to the RTC, zeros other bits. This function does not stop or delay
periodic interrupt. It does not affect the SEC_TIMER or MS_TIMER variables.

PARAMETERS

time 32-bit value representing the number of seconds since January 1, 1980.
LIBRARY

RTCLOCK.LIB

SEE ALSO

read_rtc

540 rabbit.com Dynamic C Functions

http://www.rabbit.com

writeUserBlock

int writeUserBlock(unsigned addr, void #*source, unsigned numbytes) ;

DESCRIPTION

Rabbit-based boards have a System ID block located on the primary flash. (See the Rabbit Mi-
croprocessor Designer's Handbook for more information on the System ID block.) Version 2
and later of this ID block has a pointer to a User ID block: a place intended for storing calibra-
tion constants, passwords, and other non-volatile data.

The User block is recommended for storing all non-file data. The User block is where calibra-
tion constants are stored for boards with analog I/0. Space in the User block is limited to as
small as (8K - sizeof (SysIDBlock)) bytes, or less, if there are calibration constants.

writeUserBlock () writes a number of bytes from root memory to the User block. This
block is protected from normal writes to the flash device and can only be accessed through this
function or the function writeUserBlockArray ().

Using this function can cause all interrupts to be disabled for as long as 20 ms while a flash sec-
tor erases, depending on the flash type. A single call can produce as many as four of these erase
delays. This will cause periodic interrupts to be missed, and can cause other interrupts to be

missed as well. Therefore, it is best to buffer up data to be written rather than to do many writes.

While debugging, several consecutive calls to this function can cause a loss of target serial com-
munications. This effect can be reduced by introducing delays between the calls, lowering the
baud rate, or increasing the serial time-out value in the project file.

Note: See the manual for your particular board for more information before overwrit-
ing any part of the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
writeUserBlock () should be called until it returns zero or a negative error code.
A positive return value indicates that the SPI port needed by the serial flash is in use by
another device. However, if using nC/OS-Il and SPI USE UCOS MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SPI MUTEX ERROR will occur.
See the description for rcm43 InitUCOSMutex () for more information on using
pC/OS-Iland SPI USE UCOS MUTEX.

Backwards Compatibility:

If the version of the System ID block doesn't support the User ID block, or no System ID block
is present, then 8K bytes starting 16K bytes from the top of the primary flash are designated the
User ID block area. However, to prevent errors arising from incompatible large sector configu-
rations, this will only work if the flash type is small sector. Rabbit Semiconductor manufactured
boards with large sector flash will have valid System and User ID blocks, so this should not be
problem on Rabbit boards.

If users create boards with large sector flash, they must install System ID blocks version 2 or
greater to use or modify this function.

Dynamic C Functions rabbit.com 541

http://www.rabbit.com

writeUserBlock (cont’d)

PARAMETERS
addr Address offset in User block to write to.
source Pointer to source to copy data from.
numbytes Number of bytes to copy.

RETURN VALUE
0: Successful
-1: Invalid address or range

The return values below are new with Dynamic C 10.21:
-2: No valid user block found (block version 3 or later)
- 3: flash writing error
The return values below are applicable only if SPI USE UCOS_ MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)
postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

SEE ALSO

readUserBlock, writeUserBlockArray

542 rabbit.com Dynamic C Functions

http://www.rabbit.com

writeUserBlockArray

int writeUserBlockArray(unsigned addr, void * sources[], unsigned
numbytes[], int numsources);

DESCRIPTION

Rabbit Semiconductor boards are released with System ID blocks located on the primary flash.
Version 2 and later of this ID block has a pointer to a User block that can be used for storing
calibration constants, passwords, and other non-volatile data. The User block is protected from
normal write to the flash device and can only be accessed through this function or
writeUserBlock().

This function writes a set of scattered data from root memory to the User block. If the data to

be written are in contiguous bytes, using the function writeUserBlock () is sufficient. Use
of writeUserBlockArray () is recommended when the data to be written is in noncon-

tiguous bytes, as may be the case for something like network configuration data.

See the Rabbit Microprocessor Designer's Handbook for more information about the System
ID and User blocks.

Note: Portions of the User block may be used by the BIOS for your board to store val-
ues, e.g., calibration constants. See the manual for your particular board for more infor-
mation before overwriting any part of the User block.

Note: When using a board with serial bootflash (e.g., RCM4300, RCM4310),
writeUserBlockArray () should be called until it returns zero or a negative error
code. A positive return value indicates that the SPI port needed by the serial flash is in
use by another device. However, if using uC/OS-Il and SPI USE UCOS_ MUTEX is
#defined, then this function only needs to be called once. If the mutex times out waiting
for the SPI port to free up, the run time error ERR_SPI MUTEX ERROR will occur.
See the description for rcm43 InitUCOSMutex () for more information on using
uC/OS-Iland SPI_USE UCOS MUTEX.

Backwards Compatibility:

If the System ID block on the board doesn't support the User block, or no System ID block is
present, then the 8K bytes starting 16K bytes from the top of the primary flash are designated
User block area. This only works if the flash type is small sector. Rabbit manufactured boards
with large sector flash will have valid System ID and User blocks, so is not a problem on Rabbit
boards. If users create boards with large sector flash, they must install System ID blocks version
3 or greater to use this function, or modify this function.

Dynamic C Functions rabbit.com 543

http://www.rabbit.com

writeUserBlockArray

PARAMETERS
addr Address offset in User block to write to.
sources Array of pointer to sources to copy data from.
numbytes Array of number of bytes to copy for each source. The sum of the lengths
in this array must not exceed 32767 bytes, or an error will be returned.
numsources Number of data sources.

RETURN VALUE

0: Successful.
-1: Invalid address or range.
-2: No valid User block found (block version 3 or later).

- 3: Flash writing error.

The return values below are applicable only if SPI USE UCOS_ MUTEX is not #defined:
-ETIME: (Serial flash only, time out waiting for SPI)

postive N: (Serial flash only, SPI in use by device N)

LIBRARY
IDBLOCK.LIB

544 rabbit.com Dynamic C Functions

http://www.rabbit.com

WrPortE

void WrPortE(unsigned int port, char * portshadow, int data value);

DESCRIPTION

Writes an external I/0 register with 8 bits and updates shadow for that register. The variable
names must be of the form port and portshadow for the most efficient operation. A null
pointer may be substituted if shadow support is not desired or needed.

PARAMETERS
port Address of external data register.
portshadow Reference pointer to a variable shadowing the register data. Substitute with
null pointer (or 0) if shadowing is not required.
data_value Value to be written to the data register
LIBRARY
SYSIO.LIB
SEE ALSO
RdPortI, BitRdPortI, WrPortI, BitWrPortI, RdPortE, BitRdPortE,
BitWrPortE

Dynamic C Functions rabbit.com

545

http://www.rabbit.com

WrPortI

void WrPortI(int port, char * portshadow, int data value);

DESCRIPTION

Writes an internal I/O register with 8 bits and updates shadow for that register.

PARAMETERS
port Address of data register.
portshadow Reference pointer to a variable shadowing the register data. Substitute with
null pointer (or 0) if shadowing is not required.
data_value Value to be written to the data register
LIBRARY
SYSIO.LIB
SEE ALSO

RdPortI, BitRdPortI, BitRdPortE, BitWrPortI, RdAPortE, WrPortE,
BitWrPortE

546 rabbit.com Dynamic C Functions

http://www.rabbit.com

xalloc

long xalloc(long sz);

DESCRIPTION

Allocates the specified number of bytes in extended memory. Starting with Dynamic C version
7.04P3, the returned address is always even (word) aligned.

Starting with Dynamic C 8, if xalloc () fails, a run-time error will occur. This is a wrapper
functionfor xalloc (), for backwards compatibility. Itis the sameas xalloc (&sz, 1,
XALLOC_MAYBBB) except that the actual allocated amount is not returned since the parameter
is not a pointer.

Starting with Dynamic C 9.30, xalloc () and related functions were modified so that they are
now driven by the compiler origin directives.

Note: xalloc () is not thread safe since it accesses a global static structure with no
locking.

PARAMETERS

sz Number of bytes to allocate. This is rounded up to the next higher even
number.

RETURN VALUE

The 20-bit physical address of the allocated data: Success.
0: Failure.

Note: Starting with Dynamic C 8, a run-time exception will occur if the function fails.

LIBRARY
STACK.LIB

SEE ALSO

root2xmem, xmem2root, xavail

Dynamic C Functions rabbit.com 547

http://www.rabbit.com

_xalloc

long =xalloc(long * sz, word align, word type);

DESCRIPTION

Allocates memory in extended memory. If xalloc () fails, a runtime error will occur.

PARAMETERS

sz On entry, pointer to the number of bytes to allocate. On return, the pointed-
to value will be updated with the actual number of bytes allocated. This
may be larger than requested if an odd number of bytes was requested, or
if some space was wasted at the end because of alignment restrictions.

align Storage alignment as the log (base 2) of the desired returned memory start-
ing address. For example, if this parameter is “8,” then the returned address
will align on a 256-byte boundary. Values between 0 and 16 inclusive are
allowed. Any other value is treated as zero, i.e., no required alignment.

type This parameter is only meaningful on boards with more than one
type of RAM. For example, boards with a fast RAM and a slower
battery-backed RAM like the RCM3200 or RCM3300 Use one of the

following values, any other value will have undefined results.

* XALLOC_ANY (0) - any type of SRAM storage allowed

* XALLOC_ BB (1) - must be battery-backed program execution
SRAM (a.k.a., fast RAM).

* XALLOC_NOTBB (2) - return non-BB SRAM only.

* XALLOC_ MAYBBB (3) - return non-BB SRAM in preference to BB.

RETURN VALUE

The 20-bit physical address of the allocated data on success. On error, a runtime error occurs.

Note: This return value cannot be used with pointer arithmetic.

LIBRARY
STACK.LIB

EXCEPTIONS
ERR_BADXALLOC - if could not allocate requested storage, or negative size passed.

548 rabbit.com Dynamic C Functions

http://www.rabbit.com

xalloc stats

void xalloc_stats(word parm);

DESCRIPTION

Prints a table of available xalloc () regions to the Stdio window.

This function was introduced in Dynamic C version 8. It is for debugging and educational pur-
poses. It should not be called in a production program.

PARAMETERS
parm Prior to Dynamic C version 9.30: reserved for future use. Set to 0.
Starting with DC 9.30: this parameter is of type 1ong.
LIBRARY

MEM.LIB (XMEM.LIB prior to DC 9.30)

SEE ALSO

xalloc, xalloc, xavail, xavail, xrelease

Dynamic C Functions rabbit.com

549

http://www.rabbit.com

xavail

long xavail(long * addr ptr);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an immediate
call to xalloc (), and optionally allocates that amount.

This function was introduced in Dynamic C version 7.04P3.

PARAMETERS

addr ptr Pointer to a long word in root data memory to store the address of the
block. If this pointer is null, then the block is not allocated. Otherwise, the
block is allocated as if by a call to xalloc ().

RETURN VALUE
The size of the largest free block available. If this is zero, then *addr_ ptr will not be

changed.

LIBRARY
XMEM.LIB (was in STACK.LIB prior to DC 8)

SEE ALSO

xalloc, xalloc, xavail, xrelease, xalloc_stats

550 rabbit.com Dynamic C Functions

http://www.rabbit.com

_xavail

long =xavail(long * addr ptr, word align, word type);

DESCRIPTION

Returns the maximum length of memory that may be successfully obtained by an immediate
callto xalloc (), and optionally allocates that amount. The align and type parameters
are the same as would be presented to xalloc ().

PARAMETERS
addr ptr Address of a longword, in root data memory, to store the address of the
block. If this pointer is null, then the block is not allocated. Otherwise, the
block is allocated as if by acall to _xalloc ().
align Alignment of returned block, as per xalloc ().
type Type of memory, as per _xalloc ().

RETURN VALUE

The size of the largest free block available. If this is zero, then *addr_ ptr will not be
changed.

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, _xalloc, xavail, xrelease, xalloc_stats

Dynamic C Functions rabbit.com

551

http://www.rabbit.com

xCalculateECC256

long xCalculateECC256 (unsigned long data);

DESCRIPTION

Calculates a 3 byte Error Correcting Checksum (ECC, 1 bit correction and 2 bit detection capa-
bility) value for a 256 byte (2048 bit) data buffer located in extended memory.

PARAMETERS
data Physical address of the 256 byte data buffer.

RETURN VALUE

The calculated ECC in the 3 LSBs of the long (i.e., BCDE) result. Note that the MSB (i.e., B)
of the long result is always zero.

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

552 rabbit.com Dynamic C Functions

http://www.rabbit.com

xChkCorrectECC256

int xChkCorrectECC256 (unsigned long data, void * old ecc,
void * new ecc);

DESCRIPTION

Checks the old versus new ECC values for a 256 byte (2048 bit) data buffer, and if necessary
and possible (1 bit correction, 2 bit detection), corrects the data in the specified extended mem-

ory buffer.

PARAMETERS
data Physical address of the 256 byte data buffer
old ecc Pointer to the old (original) 3 byte ECC's buffer
new_ecc Pointer to the new (current) 3 byte ECC's buffer

RETURN VALUE

0: Data and ECC are good (no correction is necessary)
1: Data is corrected and ECC is good

2: Data is good and ECC is corrected

3: Data and/or ECC are bad and uncorrectable

LIBRARY
ECC.LIB (This function was introduced in Dynamic C 9.01)

Dynamic C Functions rabbit.com

553

http://www.rabbit.com

xgetfloat

float xgetfloat(long src);

DESCRIPTION
Returns the £ 1oat pointed to by src. This is the most efficient function for obtaining 4 bytes
from xmem.

PARAMETERS
src xmem (linear) address of the float value to retrieve.

RETURN VALUE
float value (4 bytes) at src.

LIBRARY
XMEM.LIB

xgetint

int xgetint(long src);

DESCRIPTION
Returns the integer pointed to by src. This is the most efficient function for obtaining 2 bytes
from xmem.

PARAMETERS
src xmem (linear) address of the integer value to retrieve.

RETURN VALUE

Integer value (2-bytes) at src.

LIBRARY
XMEM.LIB

554 rabbit.com Dynamic C Functions

http://www.rabbit.com

xgetlong

long xgetlong(long src);

DESCRIPTION
Return the long word pointed to by src. This is the most efficient function for obtaining 4 bytes
from xmem.

PARAMETERS
src xmem (linear) address of the long value to retrieve.

RETURN VALUE

Long integer value (4 bytes) at src.

LIBRARY
XMEM.LIB

Dynamic C Functions rabbit.com 555

http://www.rabbit.com

xmem2root

int xmem2root(void * dest, unsigned long int src,
unsigned int len);

DESCRIPTION

Stores 1en characters from physical address src to logical address dest.

PARAMETERS
dest Logical address
src Physical address
len Numbers of bytes

RETURN VALUE

0: Success.
-1: Attempt to write flash memory area, nothing written.
- 2: Destination not all in root.

LIBRARY
XMEM.LIB

SEE ALSO

root2xmem, xalloc

556 rabbit.com

Dynamic C Functions

http://www.rabbit.com

Xmem2xmem

int xmem2xmem(unsigned long dest, unsigned long src,
unsigned len);

DESCRIPTION

Stores 1en characters from physical address src to physical address dest.

PARAMETERS
dest Physical address of destination
src Physical address of source data
len Length of source data in bytes

RETURN VALUE

0: Success.
-1: Attempt to write flash memory area, nothing written.

LIBRARY
XMEM.LIB

Dynamic C Functions rabbit.com

557

http://www.rabbit.com

xmemchr

long xmemchr (long src, char ch, unsigned short n);

DESCRIPTION

Search for the first occurrence of character ch in the xmem area pointed to by src.

PARAMETERS
src xmem (linear) address of the first character to search.
ch Character to search for.
n Maximum number of characters to search.

RETURN VALUE

0: Character was not found within n bytes from the start.
>0: Physical address of the first character that matched ch.

LIBRARY
XMEM.LIB

558 rabbit.com Dynamic C Functions

http://www.rabbit.com

Xmemcmp

int xmemcmp(long

DESCRIPTION

xstr, char * str, unsigned short n);

Test whether xmem string at xst r matches the root memory string at str. n bytes are com-

pared.

PARAMETERS
xstr
str

n

RETURN VALUE

0: Exact match.
>0: xstr > str
<0: xstr < str

LIBRARY
XMEM.LIB

xmem (linear) address of the first character of the first string to compare.
root address of the first character of the second string to compare.

Length of each string. If nn is zero, returns zero. n must be less than or equal
4097.

Dynamic C Functions

rabbit.com

559

http://www.rabbit.com

xrelease

void xrelease(long addr, long sz);

DESCRIPTION
Release a block of memory previously obtained by xalloc () or by xavail () with a non-
null parameter. xrelease () may only be called to free the most recent block obtained. It is
NOT a general-purpose malloc/free type of dynamic memory allocation. Calls to
xalloc () /xrelease () must be nested in first-allocated/last-released order, similar to the
execution stack. The addr parameter must be the return value from xalloc (). Ifnot, then a
run-time exception will occur. The sz parameter must also be equal to the actual allocated size,
however this is not checked. The actual allocated size may be larger than the requested size (be-
cause of alignment overhead). The actual size may be obtained by calling xalloc () rather
than xalloc (). For this reason, it is recommended that your application consistently uses
_xalloc () rather than xalloc () if you intend to use this function.

PARAMETERS
addr Address of storage previously obtained by xalloc ().

sz Size of storage previously returned by xalloc ().

LIBRARY
XMEM.LIB

SEE ALSO

xalloc, _xalloc, xavail, xavail, xalloc_stats

560 rabbit.com Dynamic C Functions

http://www.rabbit.com

xsetint

void xsetint(long dst, int wval);

DESCRIPTION
Set the integer pointed to by dst. This is the most efficient function for writing two bytes to
xmem.
PARAMETERS
dst xmem (linear) address of the int value to set.
val value to store into the above location.

RETURN VALUE

None

LIBRARY
XMEM.LIB

xsetfloat

void xsetfloat(long dst, float wval);

DESCRIPTION

Set the float pointed to by dst. This is the most efficient function for writing 4 bytes to xmem.

PARAMETERS
dst xmem (linear) address of the float value to set.
val value to store into the above location.

RETURN VALUE

None

LIBRARY
XMEM.LIB

Dynamic C Functions rabbit.com

561

http://www.rabbit.com

xsetlong

void xsetlong(long dst, long val);

DESCRIPTION
Set the long integer pointed to by dst. This is the most efficient function for writing 4 bytes to
xmem.
PARAMETERS
dst xmem (linear) address of the long integer value to set.
val value to store into the above location.

RETURN VALUE

None

LIBRARY
XMEM.LIB

xstrlen

unsigned int xstrlen(long src);

DESCRIPTION

Return the length of the string in xmem pointed to by src. If there is no null terminator within
the first 65536 bytes of the string, then the return value will be meaningless.

PARAMETERS

src xmem (linear) address of the first character of the string. Note: to perform
a normal null-terminated search, ensure that src is in the range 0..22°71,
If the MSB of src is not zero (i.e., bits 24-31) then that character will be
used to terminate the search rather than the standard null terminator. E.g.,
to determine the length of a string terminated by '@":

xstrlen (paddr (my str) | (long)'@' << 24);

RETURN VALUE

Length of string, not counting the terminator.

LIBRARY
XMEM.LIB

562 rabbit.com Dynamic C Functions

http://www.rabbit.com

PRODUCT MANUAL

Software License Agreement

RABBIT® SOFTWARE END USER LICENSE
AGREEMENT

IMPORTANT-READ CAREFULLY: BY INSTALLING, COPYING OR OTHERWISE USING THE
ENCLOSED RABBIT DYNAMIC C SOFTWARE, WHICH INCLUDES COMPUTER SOFTWARE
("SOFTWARE") AND MAY INCLUDE ASSOCIATED MEDIA, PRINTED MATERIALS, AND
"ONLINE" OR ELECTRONIC DOCUMENTATION ("DOCUMENTATION"), YOU (ON BEHALF OF
YOURSELF OR AS AN AUTHORIZED REPRESENTATIVE ON BEHALF OF AN ENTITY) AGREE
TO ALL THE TERMS OF THIS END USER LICENSE AGREEMENT ("LICENSE") REGARDING
YOUR USE OF THE SOFTWARE. IF YOU DO NOT AGREE WITH ALL OF THE TERMS OF THIS
LICENSE, DO NOT INSTALL, COPY OR OTHERWISE USE THE SOFTWARE AND IMMEDI-
ATELY CONTACT RABBIT FOR RETURN OF THE SOFTWARE AND A REFUND OF THE PUR-
CHASE PRICE FOR THE SOFTWARE.

We are sorry about the formality of the language below, which our lawyers tell us we need to include to
protect our legal rights. If You have any questions, write or call Rabbit at (530) 757-4616, 2900 Spafford
Street, Davis, California 95616.

1. Definitions. In addition to the definitions stated in the first paragraph of this document, capitalized
words used in this License shall have the following meanings:

1.1 "Qualified Applications" means an application program developed using the Software and that
links with the development libraries of the Software.

1.1.1 "Qualified Applications" is amended to include application programs developed using the Sof-
tools WinIDE program for Rabbit processors available from Softools, Inc.

1.1.2 The MicroC/OS-II (uwC/OS-II) library and sample code and the Point-to-Point Protocol (PPP)
library are not included in this amendment.

1.1.3 Excluding the exceptions in 1.1.2, library and sample code provided with the Software may be
modified for use with the Softools WinIDE program in Qualified Systems as defined in 1.2. All
other Restrictions specified by this license agreement remain in force.

1.2 "Qualified Systems" means a microprocessor-based computer system which is either (i) manufac-
tured by, for or under license from Rabbit, or (ii) based on the Rabbit 2000 microprocessor, the
Rabbit 3000 microprocessor, the Rabbit 4000 microprocessor, or any other Rabbit microproces-
sor. Qualified Systems may not be (a) designed or intended to be re-programmable by your cus-
tomer using the Software, or (b) competitive with Rabbit products, except as otherwise stated in a
written agreement between Rabbit and the system manufacturer. Such written agreement may
require an end user to pay run time royalties to Rabbit.

Dynamic C Functions rabbit.com 563

http://www.rabbit.com

2. License. Rabbit grants to You a nonexclusive, nontransferable license to (i) use and reproduce the Soft-
ware, solely for internal purposes and only for the number of users for which You have purchased
licenses for (the "Users") and not for redistribution or resale; (ii) use and reproduce the Software solely
to develop the Qualified Applications; and (iii) use, reproduce and distribute, the Qualified Applica-
tions, in object code only, to end users solely for use on Qualified Systems; provided, however, any
agreement entered into between You and such end users with respect to a Qualified Application is no
less protective of Rabbit’s intellectual property rights than the terms and conditions of this License. (iv)
use and distribute with Qualified Applications and Qualified Systems the program files distributed with
Dynamic C named RFU.EXE, PILOT.BIN, and COLDLOAD.BIN in their unaltered forms.

3. Restrictions. Except as otherwise stated, You may not, nor permit anyone else to, decompile, reverse
engineer, disassemble or otherwise attempt to reconstruct or discover the source code of the Software,
alter, merge, modify, translate, adapt in any way, prepare any derivative work based upon the Software,
rent, lease network, loan, distribute or otherwise transfer the Software or any copy thereof. You shall
not make copies of the copyrighted Software and/or documentation without the prior written permis-
sion of Rabbit; provided that, You may make one (1) hard copy of such documentation for each User
and a reasonable number of back-up copies for Your own archival purposes. You may not use copies of
the Software as part of a benchmark or comparison test against other similar products in order to pro-
duce results strictly for purposes of comparison. The Software contains copyrighted material, trade
secrets and other proprietary material of Rabbit and/or its licensors and You must reproduce, on each
copy of the Software, all copyright notices and any other proprietary legends that appear on or in the
original copy of the Software. Except for the limited license granted above, Rabbit retains all right, title
and interest in and to all intellectual property rights embodied in the Software, including but not limited
to, patents, copyrights and trade secrets.

4. Export Law Assurances. You agree and certify that neither the Software nor any other technical data
received from Rabbit, nor the direct product thereof, will be exported outside the United States or re-
exported except as authorized and as permitted by the laws and regulations of the United States and/or
the laws and regulations of the jurisdiction, (if other than the United States) in which You rightfully
obtained the Software. The Software may not be exported to any of the following countries: Cuba, Iran,
Iraq, Libya, North Korea, Sudan, or Syria.

5. Government End Users. If You are acquiring the Software on behalf of any unit or agency of the
United States Government, the following provisions apply. The Government agrees: (i) if the Software
is supplied to the Department of Defense ("DOD"), the Software is classified as "Commercial Com-
puter Software" and the Government is acquiring only "restricted rights" in the Software and its docu-
mentation as that term is defined in Clause 252.227-7013(c)(1) of the DFARS; and (ii) if the Software
is supplied to any unit or agency of the United States Government other than DOD, the Government's
rights in the Software and its documentation will be as defined in Clause 52.227-19(c)(2) of the FAR or,
in the case of NASA, in Clause 18-52.227-86(d) of the NASA Supplement to the FAR.

564 rabbit.com Dynamic C Functions

http://www.rabbit.com

6. Disclaimer of Warranty. You expressly acknowledge and agree that the use of the Software and its
documentation is at Your sole risk. THE SOFTWARE, DOCUMENTATION, AND TECHNICAL
SUPPORT ARE PROVIDED ON AN "AS IS" BASIS AND WITHOUT WARRANTY OF ANY
KIND. Information regarding any third party services included in this package is provided as a conve-
nience only, without any warranty by Rabbit, and will be governed solely by the terms agreed upon
between You and the third party providing such services. RABBIT AND ITS LICENSORS
EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTHER-
WISE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD
PARTY RIGHTS. RABBIT DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE
SOFTWARE WILL BE CORRECTED. FURTHERMORE, RABBIT DOES NOT WARRANT OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE SOFT-
WARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. NO
ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY RABBIT OR ITS AUTHORIZED
REPRESENTATIVES SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE
SCOPE OF THIS WARRANTY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

7. Limitation of Liability. YOU AGREE THAT UNDER NO CIRCUMSTANCES, INCLUDING NEG-
LIGENCE, SHALL RABBIT BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUEN-
TIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF
THE USE AND/OR INABILITY TO USE THE SOFTWARE, EVEN IF RABBIT OR ITS AUTHO-
RIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU. IN NO EVENT SHALL RABBIT’S TOTAL LIABILITY
TO YOU FOR ALL DAMAGES, LOSSES, AND CAUSES OF ACTION (WHETHER IN CON-
TRACT, TORT, INCLUDING NEGLIGENCE, OR OTHERWISE) EXCEED THE AMOUNT PAID
BY YOU FOR THE SOFTWARE.

8. Termination. This License is effective for the duration of the copyright in the Software unless termi-
nated. You may terminate this License at any time by destroying all copies of the Software and its docu-
mentation. This License will terminate immediately without notice from Rabbit if You fail to comply
with any provision of this License. Upon termination, You must destroy all copies of the Software and
its documentation. Except for Section 2 ("License"), all Sections of this Agreement shall survive any
expiration or termination of this License.

Dynamic C Functions rabbit.com 565

http://www.rabbit.com

9. General Provisions. No delay or failure to take action under this License will constitute a waiver unless
expressly waived in writing, signed by a duly authorized representative of Rabbit, and no single waiver
will constitute a continuing or subsequent waiver. This License may not be assigned, sublicensed or
otherwise transferred by You, by operation of law or otherwise, without Rabbit's prior written consent.
This License shall be governed by and construed in accordance with the laws of the United States and
the State of California, exclusive of the conflicts of laws principles. The United Nations Convention on
Contracts for the International Sale of Goods shall not apply to this License. If for any reason a court of
competent jurisdiction finds any provision of this License, or portion thereof, to be unenforceable, that
provision of the License shall be enforced to the maximum extent permissible so as to affect the intent
of the parties, and the remainder of this License shall continue in full force and effect. This License
constitutes the entire agreement between the parties with respect to the use of the Software and its doc-
umentation, and supersedes all prior or contemporaneous understandings or agreements, written or oral,
regarding such subject matter. There shall be no contract for purchase or sale of the Software except
upon the terms and conditions specified herein. Any additional or different terms or conditions pro-
posed by You or contained in any purchase order are hereby rejected and shall be of no force and effect
unless expressly agreed to in writing by Rabbit. No amendment to or modification of this License will
be binding unless in writing and signed by a duly authorized representative of Rabbit.

Digi International Inc. © 2008 + All rights reserved.

566 rabbit.com Dynamic C Functions

http://www.rabbit.com

	Table of Contents
	Alphabetical Listing of Dynamic C Functions
	Group Listing of Dynamic C Functions
	Arithmetic
	Bit Manipulation
	Bus Operation (Rabbit 3000, 4000)
	Character
	Data Encryption
	Direct Memory Access (Rabbit 4000, 5000)
	Dynamic Memory Allocation
	ECC
	Error Handling
	Extended Memory
	Fast Fourier Transforms
	File Compression
	File System, FAT
	File System, FS1
	File System, FS2
	Flash, NAND
	Flash, Parallel
	Flash, SD
	Flash, Serial
	Floating-Point Math
	Global Positioning System
	HDLC Protocol (Rabbit 3000, 4000, 5000)
	I/O
	I2C Protocol
	Interrupts
	Logging Subsystem
	MD5
	MicroC/OS-II
	Miscellaneous
	Multitasking
	Number-to-String Conversion
	Partitions
	Pulse Width Modulation (Rabbit 3000, 4000, 5000)
	Quadrature Decoder (Rabbit 3000, 4000, 5000)
	Rabbit 3000, 4000
	Rabbit 3000, 4000, 5000
	Rabbit 4000, 5000
	Real-Time Clock
	Serial Communication
	Serial Packet Driver
	Servo Control (Rabbit 3000, 4000)
	SPI
	Stdio
	String Manipulation
	String-to-Number Conversion
	System
	User Block
	VBAT RAM (Rabbit 4000, 5000)
	Watchdogs

	�1. Function Descriptions
	abs
	acos
	acot
	acsc
	AESdecrypt
	AESdecryptStream
	AESencrypt
	AESencryptStream
	AESexpandKey
	AESinitStream
	asec
	asin
	atan
	atan2
	atof
	atoi
	atol
	bit
	BIT
	BitRdPortE
	BitRdPortI
	BitWrPortE
	BitWrPortI
	CalculateECC256
	ChkCorrectECC256
	ceil
	chkHardReset
	chkSoftReset
	chkWDTO
	clockDoublerOn
	clockDoublerOff
	CloseInputCompressedFile
	CloseOutputCompressedFile
	CoBegin
	cof_pktXreceive
	cof_pktXsend
	cof_serXgetc
	cof_serXgets
	cof_serXputc
	cof_serXputs
	cof_serXread
	cof_serXwrite
	CompressFile
	CoPause
	CoReset
	CoResume
	cos
	cosh
	DecompressFile
	defineErrorHandler
	deg
	DelayMs
	DelaySec
	DelayTicks
	Disable_HW_WDT
	disableIObus
	DMAalloc
	DMAcompleted
	DMAhandle2chan
	DMAioe2mem
	DMAioi2mem
	DMAloadBufDesc
	DMAmatchSetup
	DMAmem2ioe
	DMAmem2ioi
	DMAmem2mem
	DMApoll
	DMAprintBufDesc
	DMAprintRegs
	DMAsetBufDesc
	DMAsetDirect
	DMAsetParameters
	DMAstartAuto
	DMAstartDirect
	DMAstop
	DMAstopDirect
	DMAtimerSetup
	DMAunalloc
	Enable_HW_WDT
	enableIObus
	errlogGetHeaderInfo
	errlogGetNthEntry
	errlogFormatEntry
	errlogFormatRegDump
	errlogFormatStackDump
	errlogGetMessage
	errlogReadHeader
	error_message
	exception
	exit
	exp
	fabs
	fat_AutoMount
	fat_Close
	fat_CreateDir
	fat_CreateFile
	fat_CreateTime
	fat_Delete
	fat_EnumDevice
	fat_EnumPartition
	fat_FileSize
	fat_FormatDevice
	fat_FormatPartition
	fat_Free
	fat_GetAttr
	fat_GetName
	fat_Init
	fat_InitUCOSMutex
	fat_LastAccess
	fat_LastWrite
	fat_MountPartition
	fat_Open
	fat_OpenDir
	fat_PartitionDevice
	fat_Read
	fat_ReadDir
	fat_Seek
	fat_SetAttr
	fat_Split
	fat_Status
	fat_SyncFile
	fat_SyncPartition
	fat_Tell
	fat_tick
	fat_Truncate
	fat_UnmountDevice
	fat_UnmountPartition
	fat_Write
	fat_xWrite
	fclose
	fcreate (FS1)
	fcreate (FS2)
	fcreate_unused (FS1)
	fcreate_unused (FS2)
	fdelete (FS1)
	fdelete (FS2)
	fflush (FS2)
	fftcplx
	fftcplxinv
	fftreal
	fftrealinv
	flash_erasechip
	flash_erasesector
	flash_gettype
	flash_init
	flash_read
	flash_readsector
	flash_sector2xwindow
	flash_writesector
	floor
	fmod
	fopen_rd (FS1)
	fopen_rd (FS2)
	fopen_wr (FS1)
	fopen_wr (FS2)
	forceSoftReset
	fread (FS1)
	fread (FS2)
	frexp
	fs_format (FS1)
	fs_format (FS2)
	fs_init (FS1)
	fs_init (FS2)
	fs_reserve_blocks (FS1)
	fsck (FS1)
	fseek (FS1)
	fseek (FS2)
	fs_get_flash_lx (FS2)
	fs_get_lx (FS2)
	fs_get_lx_size (FS2)
	fs_get_other_lx (FS2)
	fs_get_ram_lx (FS2)
	fs_set_lx (FS2)
	fs_setup (FS2)
	fs_sync (FS2)
	ftell (FS1)
	ftell (FS2)
	fshift
	fwrite (FS1)
	fwrite (FS2)
	ftoa
	getchar
	getcrc
	getdivider19200
	gets
	_GetSysMacroIndex
	_GetSysMacroValue
	GetVectExtern2000
	GetVectExtern3000
	GetVectIntern
	gps_get_position
	gps_get_utc
	gps_ground_distance
	hanncplx
	hannreal
	HDLCabortX
	HDLCcloseX
	HDLCdropX
	HDLCerrorX
	HDLCextClockX
	HDLCopenX
	HDLCpeekX
	HDLCreceiveX
	HDLCsendX
	HDLCsendingX
	hexstrtobyte
	hitwd
	htoa
	IntervalMs
	IntervalSec
	IntervalTick
	ipres
	ipset
	isalnum
	isalpha
	iscntrl
	isCoDone
	isCoRunning
	isdigit
	isgraph
	islower
	isspace
	isprint
	ispunct
	isupper
	isxdigit
	itoa
	i2c_check_ack
	i2c_init
	i2c_read_char
	i2c_send_ack
	i2c_send_nak
	i2c_start_tx
	i2c_startw_tx
	i2c_stop_tx
	i2c_write_char
	kbhit
	labs
	ldexp
	log
	log_clean
	log_close
	log_condition
	log_format
	log_map
	log_next
	log_open
	log_prev
	log_put
	log_seek
	log10
	longjmp
	loophead
	loopinit
	lsqrt
	ltoa
	ltoan
	lx_format
	mbr_CreatePartition
	mbr_EnumDevice
	mbr_FormatDevice
	mbr_MountPartition
	mbr_UnmountPartition
	mbr_ValidatePartitions
	md5_append
	md5_init
	md5_finish
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	mktm
	modf
	nf_eraseBlock
	nf_getPageCount
	nf_getPageSize
	nf_initDevice
	nf_InitDriver
	nf_isBusyRBHW
	nf_isBusyStatus
	nf_readPage
	nf_writePage
	nf_XD_Detect
	OpenInputCompressedFile
	OpenOutputCompressedFile
	OS_ENTER_CRITICAL
	OS_EXIT_CRITICAL
	OSFlagAccept
	OSFlagCreate
	OSFlagDel
	OSFlagPend
	OSFlagPost
	OSFlagQuery
	OSInit
	OSMboxAccept
	OSMboxCreate
	OSMboxDel
	OSMboxPend
	OSMboxPost
	OSMboxPostOpt
	OSMboxQuery
	OSMemCreate
	OSMemGet
	OSMemPut
	OSMemQuery
	OSMutexAccept
	OSMutexCreate
	OSMutexDel
	OSMutexPend
	OSMutexPost
	OSMutexQuery
	OSQAccept
	OSQCreate
	OSQDel
	OSQFlush
	OSQPend
	OSQPost
	OSQPostFront
	OSQPostOpt
	OSQQuery
	OSSchedLock
	OSSchedUnlock
	OSSemAccept
	OSSemCreate
	OSSemPend
	OSSemPost
	OSSemQuery
	OSSetTickPerSec
	OSStart
	OSStatInit
	OSTaskChangePrio
	OSTaskCreate
	OSTaskCreateExt
	OSTaskCreateHook
	OSTaskDel
	OSTaskDelHook
	OSTaskDelReq
	OSTaskIdleHook
	OSTaskQuery
	OSTaskResume
	OSTaskStatHook
	OSTaskStkChk
	OSTaskSuspend
	OSTaskSwHook
	OSTCBInitHook
	OSTimeDly
	OSTimeDlyHMSM
	OSTimeDlyResume
	OSTimeDlySec
	OSTimeGet
	OSTimeSet
	OSTimeTick
	OSTimeTickHook
	OSVersion
	outchrs
	outstr
	paddr
	paddrDS
	paddrSS
	palloc
	palloc_fast
	pavail
	pavail_fast
	pcalloc
	pfirst
	pfirst_fast
	pfree
	pfree_fast
	phwm
	pktXclose
	pktXgetErrors
	pktXinitBuffers
	pktXopen
	pktXreceive
	pktXsend
	pktXsending
	pktXsetParity
	plast
	plast_fast
	pmovebetween
	pmovebetween_fast
	pnel
	pnext
	pnext_fast
	poly
	pool_append
	pool_init
	pool_link
	pool_xappend
	pool_xinit
	pow
	pow10
	powerspectrum
	pprev
	pprev_fast
	pputlast
	pputlast_fast
	premain
	preorder
	printf
	putchar
	puts
	pwm_init
	pwm_set
	pxalloc
	pxalloc_fast
	pxcalloc
	pxfirst
	pxfirst_fast
	pxfree
	pxfree_fast
	pxlast
	pxlast_fast
	pxnext
	pxnext_fast
	pxprev
	pxprev_fast
	qd_error
	qd_init
	qd_read
	qd_zero
	qsort
	rad
	rand
	randb
	randg
	RdPortE
	RdPortI
	ReadCompressedFile
	read_rtc
	read_rtc_32kHz
	readUserBlock
	readUserBlockArray
	res
	RES
	ResetErrorLog
	root2vram
	root2xmem
	rtc_timezone
	runwatch
	sdspi_debounce
	sdspi_get_csd
	sdspi_get_scr
	sdspi_getSectorCount
	sdspi_get_status_reg
	sdspi_init_card
	sdspi_initDevice
	sdspi_isWriting
	sdspi_notbusy
	sdspi_print_dev
	sdspi_process_command
	sdspi_read_sector
	sdspi_reset_card
	sdspi_sendingAP
	sdspi_setLED
	sdspi_set_block_length
	sdspi_WriteContinue
	sdspi_write_sector
	servo_alloc_table
	servo_closedloop
	servo_disable_0
	servo_disable_1
	servo_enable_0
	servo_enable_1
	servo_gear
	servo_graph
	servo_init
	servo_millirpm2vcmd
	servo_move_to
	servo_openloop
	servo_qd_zero_0
	servo_qd_zero_1
	servo_read_table
	servo_set_coeffs
	servo_set_pos
	servo_set_vel
	servo_stats_reset
	servo_torque
	serCheckParity
	serXclose
	serXdatabits
	serXdmaOff
	serXdmaOn
	serXflowcontrolOff
	serXflowcontrolOn
	serXgetc
	serXgetError
	serXopen
	serXparity
	serXpeek
	serXputc
	serXputs
	serXrdFlush
	serXrdFree
	serXrdUsed
	serXread
	serXwrFlush
	serXwrFree
	serXwrite
	serXwrUsed
	set
	SET
	set32kHzDivider
	setClockModulation
	set_cpu_power_mode
	setjmp
	SetSerialTATxRValues
	SetVectExtern2000
	SetVectExtern3000
	SetVectExtern4000
	SetVectIntern
	sf_getPageCount
	sf_getPageSize
	sf_init
	sf_initDevice
	sf_isWriting
	sf_pageToRAM
	sf_RAMToPage
	sf_readDeviceRAM
	sf_readPage
	sf_readRAM
	sf_writeDeviceRAM
	sf_writePage
	sf_writeRAM
	sfspi_init
	sin
	sinh
	snprintf
	SPIinit
	SPIRead
	SPIWrite
	SPIWrRd
	sprintf
	sqrt
	srand
	strcat
	strchr
	strcmp
	strcmpi
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncmpi
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	_sysIsSoftReset
	sysResetChain
	tan
	tanh
	TAT1R_SetValue
	tm_rd
	tm_wr
	tolower
	toupper
	updateTimers
	use32kHzOsc
	useClockDivider
	useClockDivider3000
	useMainOsc
	utoa
	vram2root
	VdGetFreeWd
	VdHitWd
	VdInit
	VdReleaseWd
	WriteFlash2
	WriteFlash2Array
	write_rtc
	writeUserBlock
	writeUserBlockArray
	WrPortE
	WrPortI
	xalloc
	_xalloc
	xalloc_stats
	xavail
	_xavail
	xCalculateECC256
	xChkCorrectECC256
	xgetfloat
	xgetint
	xgetlong
	xmem2root
	xmem2xmem
	xmemchr
	xmemcmp
	xrelease
	xsetint
	xsetfloat
	xsetlong
	xstrlen

	Software License Agreement

		2008-12-13T18:10:47-0800
	ch

